Abstract

We present a novel type of surface-enhanced Raman scattering (SERS) substrate constituted of a 3-dimensinal polymeric inverse opal (IO) photonic crystal frame with gold nanorods (Au-NRs) decorating on the top layer. This substrate employs resonant excitation as well as constructive backward scattering of Raman signals to produce large enhancement of SERS output. For the incoming excitation, Au-NRs with appropriate aspect ratio were adopted to align their longitudinal localized surface plasmon band with the excitation laser wavelength. For the outgoing SERS signal, the spectral position of the photonic band gap was tuned to reflect Raman-scattered light constructively. This SERS substrate produces not only strong but also uniform SERS output due to the well control of Au-NRs distribution by the periodic IO structure, readily suitable for sensing applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-enhanced Raman scattering: physics and applications (Springer, 2006).
  2. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem.77(17), 338A–346A (2005).
    [CrossRef]
  3. S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
    [CrossRef]
  4. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
    [CrossRef] [PubMed]
  5. J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B110(35), 17444–17451 (2006).
    [CrossRef] [PubMed]
  6. A. Otto, “The “chemical” (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc.36(6-7), 497–509 (2005).
    [CrossRef]
  7. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys.57(3), 783–826 (1985).
    [CrossRef]
  8. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
    [CrossRef]
  9. D. L. Jeanmarie and R. P. Van Duyne, “Surface Raman spectroelectrochemistry, part 1: heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem.84, 1–20 (1977).
  10. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  11. C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, “Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates,” Phys. Chem. Chem. Phys.8(1), 165–170 (2006).
    [CrossRef] [PubMed]
  12. P. F. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys.76(1), 751–752 (1982).
    [CrossRef]
  13. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
    [CrossRef] [PubMed]
  14. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B107(37), 9964–9972 (2003).
    [CrossRef]
  15. M. Nikbakht and M. H. Mahdieh, “Optical responses of gold nanoparticles undergoing a change to cluster aggregates and laser beam characteristics effect,” J. Phys. Chem. C115(5), 1561–1568 (2011).
    [CrossRef]
  16. C. Shi, L. Tian, L. Wu, and J. Zhu, “Layered aggregates of gold nanoparticles: solution and surface-assembled structures,” J. Phys. Chem. C111(3), 1243–1247 (2007).
    [CrossRef]
  17. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999).
    [CrossRef]
  18. C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12(4), 2037–2044 (2012).
    [CrossRef] [PubMed]
  19. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
    [CrossRef] [PubMed]
  20. A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface-enhanced Raman scattering,” Opt. Express16(17), 12469–12477 (2008).
    [CrossRef] [PubMed]
  21. F. H. Scholes, T. J. Davis, K. C. Vernon, D. Lau, S. A. Furman, and A. M. Glenn, “A hybrid substrate for surface-enhanced Raman scattering spectroscopy: coupling metal nanoparticles to strong localised fields on a micro-structured surface,” J. Raman Spectrosc.43(2), 196–201 (2012).
    [CrossRef]
  22. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.)18(4), 491–495 (2006).
    [CrossRef]
  23. H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater.22(1), 218–224 (2012).
    [CrossRef]
  24. C. Y. Wu, C. C. Huang, J. S. Jhang, A. C. Liu, C. C. Chiang, M. L. Hsieh, P. J. Huang, D. Tuyen, Q. Minh, T. S. Yang, L. K. Chau, H. C. Kan, and C. C. Hsu, “Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: maneuverability and uniformity of Raman spectra,” Opt. Express17(24), 21522–21529 (2009).
    [CrossRef] [PubMed]
  25. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.)241, 20–22 (1973).
  26. L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012).
    [CrossRef]
  27. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003).
    [CrossRef]
  28. C. C. Huang, C. H. Huang, I. T. Kuo, L. K. Chau, and T. S. Yang, “Synthesis of silica-coated gold nanorod as Raman tags by modulating cetyltrimethylammonium bromide concentration,” Colloids Surf. A Physicochem. Eng. Asp.409, 61–68 (2012).
    [CrossRef]
  29. R. Atkin, V. S. J. Craig, E. J. Wanless, and S. Biggs, “The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica-aqueous solution interface,” J. Colloid Interface Sci.266(2), 236–244 (2003).
    [CrossRef] [PubMed]
  30. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103(40), 8410–8426 (1999).
    [CrossRef]
  31. J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Goldnanorods: synthesis, characterization and applications,” Coord. Chem. Rev.249(17-18), 1870–1901 (2005).
    [CrossRef]
  32. S. Yun, Y. K. Park, S. K. Kim, and S. Park, “Linker-molecule-free gold nanorod layer-by-layer films for surface-enhanced Raman scattering,” Anal. Chem.79(22), 8584–8589 (2007).
    [CrossRef] [PubMed]
  33. G. Wang, H. Y. Park, R. J. Lipert, and M. D. Porter, “Mixed monolayers on gold nanoparticle labels for multiplexed surface-enhanced Raman scattering based immunoassays,” Anal. Chem.81(23), 9643–9650 (2009).
    [CrossRef] [PubMed]
  34. C. G. Blatchford, J. R. Campbell, and J. A. Creighton, “Plasma resonance − enhanced Raman scattering by adsorbates on gold colloids: the effects of aggregation,” Surf. Sci.120(2), 435–455 (1982).
    [CrossRef]
  35. C. McLaughlin, D. Graham, and W. E. Smith, “Comparison of resonant and nonresonant conditions on the concentration dependence of surface enhanced Raman scattering from a dye adsorbed on silver colloid,” J. Phys. Chem. B106(21), 5408–5412 (2002).
    [CrossRef]

2012 (5)

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12(4), 2037–2044 (2012).
[CrossRef] [PubMed]

F. H. Scholes, T. J. Davis, K. C. Vernon, D. Lau, S. A. Furman, and A. M. Glenn, “A hybrid substrate for surface-enhanced Raman scattering spectroscopy: coupling metal nanoparticles to strong localised fields on a micro-structured surface,” J. Raman Spectrosc.43(2), 196–201 (2012).
[CrossRef]

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater.22(1), 218–224 (2012).
[CrossRef]

L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012).
[CrossRef]

C. C. Huang, C. H. Huang, I. T. Kuo, L. K. Chau, and T. S. Yang, “Synthesis of silica-coated gold nanorod as Raman tags by modulating cetyltrimethylammonium bromide concentration,” Colloids Surf. A Physicochem. Eng. Asp.409, 61–68 (2012).
[CrossRef]

2011 (1)

M. Nikbakht and M. H. Mahdieh, “Optical responses of gold nanoparticles undergoing a change to cluster aggregates and laser beam characteristics effect,” J. Phys. Chem. C115(5), 1561–1568 (2011).
[CrossRef]

2010 (1)

S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (2)

S. Yun, Y. K. Park, S. K. Kim, and S. Park, “Linker-molecule-free gold nanorod layer-by-layer films for surface-enhanced Raman scattering,” Anal. Chem.79(22), 8584–8589 (2007).
[CrossRef] [PubMed]

C. Shi, L. Tian, L. Wu, and J. Zhu, “Layered aggregates of gold nanoparticles: solution and surface-assembled structures,” J. Phys. Chem. C111(3), 1243–1247 (2007).
[CrossRef]

2006 (3)

C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, “Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates,” Phys. Chem. Chem. Phys.8(1), 165–170 (2006).
[CrossRef] [PubMed]

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B110(35), 17444–17451 (2006).
[CrossRef] [PubMed]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.)18(4), 491–495 (2006).
[CrossRef]

2005 (5)

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Goldnanorods: synthesis, characterization and applications,” Coord. Chem. Rev.249(17-18), 1870–1901 (2005).
[CrossRef]

A. Otto, “The “chemical” (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc.36(6-7), 497–509 (2005).
[CrossRef]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem.77(17), 338A–346A (2005).
[CrossRef]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

2004 (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

2003 (4)

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B107(37), 9964–9972 (2003).
[CrossRef]

R. Atkin, V. S. J. Craig, E. J. Wanless, and S. Biggs, “The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica-aqueous solution interface,” J. Colloid Interface Sci.266(2), 236–244 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

2002 (1)

C. McLaughlin, D. Graham, and W. E. Smith, “Comparison of resonant and nonresonant conditions on the concentration dependence of surface enhanced Raman scattering from a dye adsorbed on silver colloid,” J. Phys. Chem. B106(21), 5408–5412 (2002).
[CrossRef]

1999 (2)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103(40), 8410–8426 (1999).
[CrossRef]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999).
[CrossRef]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys.57(3), 783–826 (1985).
[CrossRef]

1982 (2)

P. F. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys.76(1), 751–752 (1982).
[CrossRef]

C. G. Blatchford, J. R. Campbell, and J. A. Creighton, “Plasma resonance − enhanced Raman scattering by adsorbates on gold colloids: the effects of aggregation,” Surf. Sci.120(2), 435–455 (1982).
[CrossRef]

1977 (1)

D. L. Jeanmarie and R. P. Van Duyne, “Surface Raman spectroelectrochemistry, part 1: heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem.84, 1–20 (1977).

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
[CrossRef]

1973 (1)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.)241, 20–22 (1973).

Abdelsalam, M. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Anh, T. K.

L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012).
[CrossRef]

Aspuru-Guzik, A. A.

S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
[CrossRef]

Atkin, R.

R. Atkin, V. S. J. Craig, E. J. Wanless, and S. Biggs, “The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica-aqueous solution interface,” J. Colloid Interface Sci.266(2), 236–244 (2003).
[CrossRef] [PubMed]

Aydinli, A.

Bartlett, P. N.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Baumberg, J. J.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Biggs, S.

R. Atkin, V. S. J. Craig, E. J. Wanless, and S. Biggs, “The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica-aqueous solution interface,” J. Colloid Interface Sci.266(2), 236–244 (2003).
[CrossRef] [PubMed]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999).
[CrossRef]

Blatchford, C. G.

C. G. Blatchford, J. R. Campbell, and J. A. Creighton, “Plasma resonance − enhanced Raman scattering by adsorbates on gold colloids: the effects of aggregation,” Surf. Sci.120(2), 435–455 (1982).
[CrossRef]

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999).
[CrossRef]

Bosnick, K.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B107(37), 9964–9972 (2003).
[CrossRef]

Brus, L.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B107(37), 9964–9972 (2003).
[CrossRef]

Campbell, J. R.

C. G. Blatchford, J. R. Campbell, and J. A. Creighton, “Plasma resonance − enhanced Raman scattering by adsorbates on gold colloids: the effects of aggregation,” Surf. Sci.120(2), 435–455 (1982).
[CrossRef]

Capretti, A.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12(4), 2037–2044 (2012).
[CrossRef] [PubMed]

Chan, T. H.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.)18(4), 491–495 (2006).
[CrossRef]

Chau, L. K.

Chiang, C. C.

Chu, Y.

S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
[CrossRef]

Cintra, S.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Craig, V. S. J.

R. Atkin, V. S. J. Craig, E. J. Wanless, and S. Biggs, “The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica-aqueous solution interface,” J. Colloid Interface Sci.266(2), 236–244 (2003).
[CrossRef] [PubMed]

Creighton, J. A.

C. G. Blatchford, J. R. Campbell, and J. A. Creighton, “Plasma resonance − enhanced Raman scattering by adsorbates on gold colloids: the effects of aggregation,” Surf. Sci.120(2), 435–455 (1982).
[CrossRef]

Crozier, K. B.

S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
[CrossRef]

Dal Negro, L.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12(4), 2037–2044 (2012).
[CrossRef] [PubMed]

Davis, T. J.

F. H. Scholes, T. J. Davis, K. C. Vernon, D. Lau, S. A. Furman, and A. M. Glenn, “A hybrid substrate for surface-enhanced Raman scattering spectroscopy: coupling metal nanoparticles to strong localised fields on a micro-structured surface,” J. Raman Spectrosc.43(2), 196–201 (2012).
[CrossRef]

Dieringer, J. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Driskell, J. D.

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B110(35), 17444–17451 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103(40), 8410–8426 (1999).
[CrossRef]

Ertas, G.

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
[CrossRef]

Forestiere, C.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12(4), 2037–2044 (2012).
[CrossRef] [PubMed]

Frens, G.

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.)241, 20–22 (1973).

Furman, S. A.

F. H. Scholes, T. J. Davis, K. C. Vernon, D. Lau, S. A. Furman, and A. M. Glenn, “A hybrid substrate for surface-enhanced Raman scattering spectroscopy: coupling metal nanoparticles to strong localised fields on a micro-structured surface,” J. Raman Spectrosc.43(2), 196–201 (2012).
[CrossRef]

Gearheart, L.

C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, “Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates,” Phys. Chem. Chem. Phys.8(1), 165–170 (2006).
[CrossRef] [PubMed]

Glenn, A. M.

F. H. Scholes, T. J. Davis, K. C. Vernon, D. Lau, S. A. Furman, and A. M. Glenn, “A hybrid substrate for surface-enhanced Raman scattering spectroscopy: coupling metal nanoparticles to strong localised fields on a micro-structured surface,” J. Raman Spectrosc.43(2), 196–201 (2012).
[CrossRef]

Graham, D.

C. McLaughlin, D. Graham, and W. E. Smith, “Comparison of resonant and nonresonant conditions on the concentration dependence of surface enhanced Raman scattering from a dye adsorbed on silver colloid,” J. Phys. Chem. B106(21), 5408–5412 (2002).
[CrossRef]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem.77(17), 338A–346A (2005).
[CrossRef]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
[CrossRef]

Hsieh, M. L.

Hsu, C. C.

Hsu, C. F.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.)18(4), 491–495 (2006).
[CrossRef]

Huang, C. C.

Huang, C. H.

C. C. Huang, C. H. Huang, I. T. Kuo, L. K. Chau, and T. S. Yang, “Synthesis of silica-coated gold nanorod as Raman tags by modulating cetyltrimethylammonium bromide concentration,” Colloids Surf. A Physicochem. Eng. Asp.409, 61–68 (2012).
[CrossRef]

Huang, P. J.

Huang, Q.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater.22(1), 218–224 (2012).
[CrossRef]

Huang, Z.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater.22(1), 218–224 (2012).
[CrossRef]

Jana, N. R.

C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, “Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates,” Phys. Chem. Chem. Phys.8(1), 165–170 (2006).
[CrossRef] [PubMed]

Jeanmarie, D. L.

D. L. Jeanmarie and R. P. Van Duyne, “Surface Raman spectroelectrochemistry, part 1: heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem.84, 1–20 (1977).

Jhang, J. S.

Jiang, J.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B107(37), 9964–9972 (2003).
[CrossRef]

Käll, M.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999).
[CrossRef]

Kan, H. C.

Kelf, T. A.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Kim, S. K.

S. Yun, Y. K. Park, S. K. Kim, and S. Park, “Linker-molecule-free gold nanorod layer-by-layer films for surface-enhanced Raman scattering,” Anal. Chem.79(22), 8584–8589 (2007).
[CrossRef] [PubMed]

Kocabas, A.

Kuo, I. T.

C. C. Huang, C. H. Huang, I. T. Kuo, L. K. Chau, and T. S. Yang, “Synthesis of silica-coated gold nanorod as Raman tags by modulating cetyltrimethylammonium bromide concentration,” Colloids Surf. A Physicochem. Eng. Asp.409, 61–68 (2012).
[CrossRef]

Lau, D.

F. H. Scholes, T. J. Davis, K. C. Vernon, D. Lau, S. A. Furman, and A. M. Glenn, “A hybrid substrate for surface-enhanced Raman scattering spectroscopy: coupling metal nanoparticles to strong localised fields on a micro-structured surface,” J. Raman Spectrosc.43(2), 196–201 (2012).
[CrossRef]

Lee, S. Y.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12(4), 2037–2044 (2012).
[CrossRef] [PubMed]

Liao, P. F.

P. F. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys.76(1), 751–752 (1982).
[CrossRef]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103(40), 8410–8426 (1999).
[CrossRef]

Lipert, R. J.

G. Wang, H. Y. Park, R. J. Lipert, and M. D. Porter, “Mixed monolayers on gold nanoparticle labels for multiplexed surface-enhanced Raman scattering based immunoassays,” Anal. Chem.81(23), 9643–9650 (2009).
[CrossRef] [PubMed]

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B110(35), 17444–17451 (2006).
[CrossRef] [PubMed]

Liu, A. C.

Liu, C. Y.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.)18(4), 491–495 (2006).
[CrossRef]

Liu, N. W.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.)18(4), 491–495 (2006).
[CrossRef]

Liz-Marzán, L. M.

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Goldnanorods: synthesis, characterization and applications,” Coord. Chem. Rev.249(17-18), 1870–1901 (2005).
[CrossRef]

Mahdieh, M. H.

M. Nikbakht and M. H. Mahdieh, “Optical responses of gold nanoparticles undergoing a change to cluster aggregates and laser beam characteristics effect,” J. Phys. Chem. C115(5), 1561–1568 (2011).
[CrossRef]

Maillard, M.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B107(37), 9964–9972 (2003).
[CrossRef]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem.77(17), 338A–346A (2005).
[CrossRef]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

McLaughlin, C.

C. McLaughlin, D. Graham, and W. E. Smith, “Comparison of resonant and nonresonant conditions on the concentration dependence of surface enhanced Raman scattering from a dye adsorbed on silver colloid,” J. Phys. Chem. B106(21), 5408–5412 (2002).
[CrossRef]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
[CrossRef]

Meng, G.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater.22(1), 218–224 (2012).
[CrossRef]

Miano, G.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12(4), 2037–2044 (2012).
[CrossRef] [PubMed]

Minh, L. Q.

L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012).
[CrossRef]

Minh, Q.

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys.57(3), 783–826 (1985).
[CrossRef]

Mulvaney, P.

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Goldnanorods: synthesis, characterization and applications,” Coord. Chem. Rev.249(17-18), 1870–1901 (2005).
[CrossRef]

Murphy, C. J.

C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, “Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates,” Phys. Chem. Chem. Phys.8(1), 165–170 (2006).
[CrossRef] [PubMed]

Nikbakht, M.

M. Nikbakht and M. H. Mahdieh, “Optical responses of gold nanoparticles undergoing a change to cluster aggregates and laser beam characteristics effect,” J. Phys. Chem. C115(5), 1561–1568 (2011).
[CrossRef]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

Orendorff, C. J.

C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, “Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates,” Phys. Chem. Chem. Phys.8(1), 165–170 (2006).
[CrossRef] [PubMed]

Otto, A.

A. Otto, “The “chemical” (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc.36(6-7), 497–509 (2005).
[CrossRef]

Park, H. Y.

G. Wang, H. Y. Park, R. J. Lipert, and M. D. Porter, “Mixed monolayers on gold nanoparticle labels for multiplexed surface-enhanced Raman scattering based immunoassays,” Anal. Chem.81(23), 9643–9650 (2009).
[CrossRef] [PubMed]

Park, S.

S. Yun, Y. K. Park, S. K. Kim, and S. Park, “Linker-molecule-free gold nanorod layer-by-layer films for surface-enhanced Raman scattering,” Anal. Chem.79(22), 8584–8589 (2007).
[CrossRef] [PubMed]

Park, Y. K.

S. Yun, Y. K. Park, S. K. Kim, and S. Park, “Linker-molecule-free gold nanorod layer-by-layer films for surface-enhanced Raman scattering,” Anal. Chem.79(22), 8584–8589 (2007).
[CrossRef] [PubMed]

Pasquale, A. J.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12(4), 2037–2044 (2012).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Goldnanorods: synthesis, characterization and applications,” Coord. Chem. Rev.249(17-18), 1870–1901 (2005).
[CrossRef]

Peng, C. Y.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.)18(4), 491–495 (2006).
[CrossRef]

Pérez-Juste, J.

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Goldnanorods: synthesis, characterization and applications,” Coord. Chem. Rev.249(17-18), 1870–1901 (2005).
[CrossRef]

Porter, M. D.

G. Wang, H. Y. Park, R. J. Lipert, and M. D. Porter, “Mixed monolayers on gold nanoparticle labels for multiplexed surface-enhanced Raman scattering based immunoassays,” Anal. Chem.81(23), 9643–9650 (2009).
[CrossRef] [PubMed]

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B110(35), 17444–17451 (2006).
[CrossRef] [PubMed]

Rappoport, D.

S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
[CrossRef]

Reinhard, B. M.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12(4), 2037–2044 (2012).
[CrossRef] [PubMed]

Russell, A. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Saikin, S. K.

S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
[CrossRef]

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Scholes, F. H.

F. H. Scholes, T. J. Davis, K. C. Vernon, D. Lau, S. A. Furman, and A. M. Glenn, “A hybrid substrate for surface-enhanced Raman scattering spectroscopy: coupling metal nanoparticles to strong localised fields on a micro-structured surface,” J. Raman Spectrosc.43(2), 196–201 (2012).
[CrossRef]

Senlik, S. S.

Shi, C.

C. Shi, L. Tian, L. Wu, and J. Zhu, “Layered aggregates of gold nanoparticles: solution and surface-assembled structures,” J. Phys. Chem. C111(3), 1243–1247 (2007).
[CrossRef]

Smith, W. E.

C. McLaughlin, D. Graham, and W. E. Smith, “Comparison of resonant and nonresonant conditions on the concentration dependence of surface enhanced Raman scattering from a dye adsorbed on silver colloid,” J. Phys. Chem. B106(21), 5408–5412 (2002).
[CrossRef]

Sugawara, Y.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Tamburrino, A.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12(4), 2037–2044 (2012).
[CrossRef] [PubMed]

Tang, H.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater.22(1), 218–224 (2012).
[CrossRef]

Tian, L.

C. Shi, L. Tian, L. Wu, and J. Zhu, “Layered aggregates of gold nanoparticles: solution and surface-assembled structures,” J. Phys. Chem. C111(3), 1243–1247 (2007).
[CrossRef]

Tuyen, D.

Tuyen, L. D.

L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012).
[CrossRef]

Van Duyne, R. P.

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem.77(17), 338A–346A (2005).
[CrossRef]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

D. L. Jeanmarie and R. P. Van Duyne, “Surface Raman spectroelectrochemistry, part 1: heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem.84, 1–20 (1977).

Vernon, K. C.

F. H. Scholes, T. J. Davis, K. C. Vernon, D. Lau, S. A. Furman, and A. M. Glenn, “A hybrid substrate for surface-enhanced Raman scattering spectroscopy: coupling metal nanoparticles to strong localised fields on a micro-structured surface,” J. Raman Spectrosc.43(2), 196–201 (2012).
[CrossRef]

Wang, G.

G. Wang, H. Y. Park, R. J. Lipert, and M. D. Porter, “Mixed monolayers on gold nanoparticle labels for multiplexed surface-enhanced Raman scattering based immunoassays,” Anal. Chem.81(23), 9643–9650 (2009).
[CrossRef] [PubMed]

Wang, H. H.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.)18(4), 491–495 (2006).
[CrossRef]

Wang, J. K.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.)18(4), 491–495 (2006).
[CrossRef]

Wang, Y. L.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.)18(4), 491–495 (2006).
[CrossRef]

Wanless, E. J.

R. Atkin, V. S. J. Craig, E. J. Wanless, and S. Biggs, “The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica-aqueous solution interface,” J. Colloid Interface Sci.266(2), 236–244 (2003).
[CrossRef] [PubMed]

Wokaun, A.

P. F. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys.76(1), 751–752 (1982).
[CrossRef]

Wu, C. Y.

Wu, L.

C. Shi, L. Tian, L. Wu, and J. Zhu, “Layered aggregates of gold nanoparticles: solution and surface-assembled structures,” J. Phys. Chem. C111(3), 1243–1247 (2007).
[CrossRef]

Wu, S. B.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.)18(4), 491–495 (2006).
[CrossRef]

Xu, H.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999).
[CrossRef]

Yang, T. S.

Young, M. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Yun, S.

S. Yun, Y. K. Park, S. K. Kim, and S. Park, “Linker-molecule-free gold nanorod layer-by-layer films for surface-enhanced Raman scattering,” Anal. Chem.79(22), 8584–8589 (2007).
[CrossRef] [PubMed]

Zhang, Z.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater.22(1), 218–224 (2012).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Zhu, C.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater.22(1), 218–224 (2012).
[CrossRef]

Zhu, J.

C. Shi, L. Tian, L. Wu, and J. Zhu, “Layered aggregates of gold nanoparticles: solution and surface-assembled structures,” J. Phys. Chem. C111(3), 1243–1247 (2007).
[CrossRef]

Adv. Funct. Mater. (1)

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater.22(1), 218–224 (2012).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.)18(4), 491–495 (2006).
[CrossRef]

Anal. Chem. (3)

S. Yun, Y. K. Park, S. K. Kim, and S. Park, “Linker-molecule-free gold nanorod layer-by-layer films for surface-enhanced Raman scattering,” Anal. Chem.79(22), 8584–8589 (2007).
[CrossRef] [PubMed]

G. Wang, H. Y. Park, R. J. Lipert, and M. D. Porter, “Mixed monolayers on gold nanoparticle labels for multiplexed surface-enhanced Raman scattering based immunoassays,” Anal. Chem.81(23), 9643–9650 (2009).
[CrossRef] [PubMed]

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem.77(17), 338A–346A (2005).
[CrossRef]

Chem. Mater. (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
[CrossRef]

Colloids Surf. A Physicochem. Eng. Asp. (1)

C. C. Huang, C. H. Huang, I. T. Kuo, L. K. Chau, and T. S. Yang, “Synthesis of silica-coated gold nanorod as Raman tags by modulating cetyltrimethylammonium bromide concentration,” Colloids Surf. A Physicochem. Eng. Asp.409, 61–68 (2012).
[CrossRef]

Coord. Chem. Rev. (1)

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Goldnanorods: synthesis, characterization and applications,” Coord. Chem. Rev.249(17-18), 1870–1901 (2005).
[CrossRef]

J. Chem. Phys. (2)

P. F. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys.76(1), 751–752 (1982).
[CrossRef]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

J. Colloid Interface Sci. (1)

R. Atkin, V. S. J. Craig, E. J. Wanless, and S. Biggs, “The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica-aqueous solution interface,” J. Colloid Interface Sci.266(2), 236–244 (2003).
[CrossRef] [PubMed]

J. Electroanal. Chem. (1)

D. L. Jeanmarie and R. P. Van Duyne, “Surface Raman spectroelectrochemistry, part 1: heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem.84, 1–20 (1977).

J. Exp. Nanosci. (1)

L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012).
[CrossRef]

J. Phys. Chem. B (6)

C. McLaughlin, D. Graham, and W. E. Smith, “Comparison of resonant and nonresonant conditions on the concentration dependence of surface enhanced Raman scattering from a dye adsorbed on silver colloid,” J. Phys. Chem. B106(21), 5408–5412 (2002).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103(40), 8410–8426 (1999).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B110(35), 17444–17451 (2006).
[CrossRef] [PubMed]

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B107(37), 9964–9972 (2003).
[CrossRef]

J. Phys. Chem. C (2)

M. Nikbakht and M. H. Mahdieh, “Optical responses of gold nanoparticles undergoing a change to cluster aggregates and laser beam characteristics effect,” J. Phys. Chem. C115(5), 1561–1568 (2011).
[CrossRef]

C. Shi, L. Tian, L. Wu, and J. Zhu, “Layered aggregates of gold nanoparticles: solution and surface-assembled structures,” J. Phys. Chem. C111(3), 1243–1247 (2007).
[CrossRef]

J. Phys. Chem. Lett. (1)

S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
[CrossRef]

J. Raman Spectrosc. (2)

A. Otto, “The “chemical” (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc.36(6-7), 497–509 (2005).
[CrossRef]

F. H. Scholes, T. J. Davis, K. C. Vernon, D. Lau, S. A. Furman, and A. M. Glenn, “A hybrid substrate for surface-enhanced Raman scattering spectroscopy: coupling metal nanoparticles to strong localised fields on a micro-structured surface,” J. Raman Spectrosc.43(2), 196–201 (2012).
[CrossRef]

Nano Lett. (2)

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12(4), 2037–2044 (2012).
[CrossRef] [PubMed]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Nat. Phys. Sci (Lond.) (1)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.)241, 20–22 (1973).

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, “Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates,” Phys. Chem. Chem. Phys.8(1), 165–170 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys.57(3), 783–826 (1985).
[CrossRef]

Surf. Sci. (1)

C. G. Blatchford, J. R. Campbell, and J. A. Creighton, “Plasma resonance − enhanced Raman scattering by adsorbates on gold colloids: the effects of aggregation,” Surf. Sci.120(2), 435–455 (1982).
[CrossRef]

Other (1)

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-enhanced Raman scattering: physics and applications (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) FESEM image of Au-NRs decorated on a SU-8 planar substrate with σ = 60 µm−2. Inset: TEM image of Au-NRs.(b) and (c) FESEM images of Au-NRs decorated on a SU-8 IO substrate with σ = 65 µm−2. (d) σ of Au-NRs on SU-8 IO substrates as a function of the immersion time.

Fig. 2
Fig. 2

UV-Vis extinction spectra of Au-NSs and Au-NRs in aqueous solution and deposited on SU-8 planar substrates. For clarity, the vertical values corresponding to curve 3 and 4 were multiplied by a factor of 10. The average diameter of Au-NSs is 28 ± 4 nm. The average length and width of Au-NRs are 42 ± 5 nm and 19 ± 2 nm, respectively. The number densities σ are 272 and 245 µm−2 for Au-NSs and Au-NRs decorated on SU-8 planar substrates, respectively.

Fig. 3
Fig. 3

Normal-incident reflection spectra of Au-NRs SU-8 IO substrates. The dashed lines denote wavelengths of excitation laser at 632.8 nm and the Raman-shifted peak at 1334 cm−1 (691 nm) of 4-NBT molecules.

Fig. 4
Fig. 4

(a) SERS spectra of 4-NBT molecules adsorbed on SERS substrates listed in Table 1. The curves are arranged according to their SERS intensities from top to bottom. The inset shows the molecular structure of 4-NBT. (b) SERS intensities of the major Raman peak 1334 cm−1 (λ = 691 nm) of 4-NBT probe molecules obtained from substrates A to J.

Fig. 5
Fig. 5

(a) Au-NR number density (σ) dependence of SERS intensities of the Raman peak at 1334 cm−1 (691 nm) of 4-NBT probe molecules measured from substrate A to I. The sample specification in Table 1 applies to the alphabetic labeling here except the number density of Au-NRs. (b)The FESEM image of Au-NRs decorated on a SU-8 IO substrate with σ = 243µm−2. (c) The σ dependence of the same signal in (a) normalized with σ.

Tables (1)

Tables Icon

Table 1 Au-NPs decorated SU-8 substrates*

Metrics