Abstract

Multiple path optical coherence tomography using re-circulating loops has previously been presented as a means of simultaneously acquiring images from multiple depths in multiple imaging channels. The configurations reported so far present the drawback that the strength of the signal from one channel to the next, reduced as the number of circulations increased. A decay of signal of not better than 4 dB from one channel to the next was reported. We present a technique to reduce this attenuation by using polarization maintaining fiber, and modulation of the drive current of the semiconductor optical amplifiers contained in each arm. The effect of these improvements resulted in a decay less than 20 dB from the 1st channel to the 10th channel.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE 3564, 173–178 (1998).
    [CrossRef]
  3. K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grützner, C. Hitzenberger, and D. Stifter, “En-face scanning optical coherence tomography with ultra-high resolution for material investigation,” Opt. Express 13(3), 1015–1024 (2005).
    [CrossRef] [PubMed]
  4. A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Coherence imaging by use of a Newton rings sampling function,” Opt. Lett. 21(21), 1789–1791 (1996).
    [CrossRef] [PubMed]
  5. L. Neagu, A. Bradu, L. Ma, J. W. Bloor, and A. G. Podoleanu, “Multiple-depth en face optical coherence tomography using active recirculation loops,” Opt. Lett. 35(13), 2296–2298 (2010).
    [CrossRef] [PubMed]
  6. J. T. Kringlebotn and K. Bløtekjær, “Noise analysis of an amplified fiber-optic recirculating-ring delay line,” J. Lightwave Technol. 12(3), 573–582 (1994).
    [CrossRef]
  7. A. Bradu, L. Neagu, and A. Podoleanu, “Extra long imaging range swept source optical coherence tomography using re-circulation loops,” Opt. Express 18(24), 25361–25370 (2010).
    [CrossRef] [PubMed]
  8. F. D. Nielsen, L. Thrane, J. F. Black, A. Bjarklev, and P. E. Andersen, “Swept wavelength source in the 1 µm range,” Opt. Express 13(11), 4096–4106 (2005).
    [CrossRef] [PubMed]
  9. S. Shimada and H. Ishio, Optical Amplifiers and their Applications (John Wiley & Sons Tokyo, 1992).
  10. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
  11. R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, P. Laissue, G. M. Dobre, and A. G. Podoleanu, “Multidimensional en-face OCT imaging of the retina,” Opt. Express 17(5), 4112–4133 (2009).
    [CrossRef] [PubMed]

2010

2009

2005

1998

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE 3564, 173–178 (1998).
[CrossRef]

1996

1994

J. T. Kringlebotn and K. Bløtekjær, “Noise analysis of an amplified fiber-optic recirculating-ring delay line,” J. Lightwave Technol. 12(3), 573–582 (1994).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ahrens, G.

Andersen, P. E.

Bauer, S.

Bjarklev, A.

Black, J. F.

Bloor, J. W.

Bløtekjær, K.

J. T. Kringlebotn and K. Bløtekjær, “Noise analysis of an amplified fiber-optic recirculating-ring delay line,” J. Lightwave Technol. 12(3), 573–582 (1994).
[CrossRef]

Bradu, A.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Dobre, G. M.

Engelke, R.

Fercher, A. F.

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE 3564, 173–178 (1998).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Garcia, P.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grützner, G.

Hathaway, M.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE 3564, 173–178 (1998).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Jackson, D. A.

Kringlebotn, J. T.

J. T. Kringlebotn and K. Bløtekjær, “Noise analysis of an amplified fiber-optic recirculating-ring delay line,” J. Lightwave Technol. 12(3), 573–582 (1994).
[CrossRef]

Laissue, P.

Leitgeb, R.

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE 3564, 173–178 (1998).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ma, L.

Neagu, L.

Nielsen, F. D.

Pedro, J.

Pircher, M.

Podoleanu, A.

Podoleanu, A. G.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rogers, J.

Rosen, R. B.

Sattmann, H.

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE 3564, 173–178 (1998).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stifter, D.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Thrane, L.

Webb, D. J.

Wiesauer, K.

Wojtkowski, M.

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE 3564, 173–178 (1998).
[CrossRef]

J. Lightwave Technol.

J. T. Kringlebotn and K. Bløtekjær, “Noise analysis of an amplified fiber-optic recirculating-ring delay line,” J. Lightwave Technol. 12(3), 573–582 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE 3564, 173–178 (1998).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other

S. Shimada and H. Ishio, Optical Amplifiers and their Applications (John Wiley & Sons Tokyo, 1992).

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Layout of multiple path polarisation maintaining OCT configuration. SLD: superluminescent diode; YTT: ytterbium doped amplifier; C1, C2, C3, C4: PM 50/50 splitting ratio fiber couplers; SOA1, SOA2: semiconductor amplifiers; AOFS1. AOFS2: acousto-optic frequency shifters; AP1, AP2 adjustable length air paths; ADC: National Instruments PCI-5124 high speed analogue/digital card. The AC modulation voltage (when used) is applied via a bias T from the 50 ohm output of a function generator. A 90% duty cycle 1 MHz waveform was applied via a matching 50 ohm load resistor for protection, with the capacitors and inductors Cap1, L1 and Cap2, L2 used to introduce the modulation currents.

Fig. 2
Fig. 2

Ideal loop. Input light is divided at the 3dB coupler and half circulated to the SOA.

Fig. 3
Fig. 3

Idealized power build up in one arm of the multiple path delay line with arbitrary input power.

Fig. 4
Fig. 4

Photo-detected signal measured at the output of Circulator1 in Fig. 1, with the object arm blocked and for 68 mA drive current to the SOA1 and for different optical input power incident to coupler C1: Left: 85 µW, Right: 500 µW.

Fig. 5
Fig. 5

Photo-detected signal measured at output of Circulator2 in Fig. 1 for no incident SLD optical power to the loop and 1.5 V ramp modulation superposed on different values of dc current through the SOA2: Left: 78 mA (below threshold); Right: 83 mA. (The higher the optical power, the higher the signal in both graphs).

Fig. 6
Fig. 6

Detector response (top raw) for different shapes of the modulation signal applied to the SOA in SOA2 (bottom raw). Left: Square wave modulation; Right: Ramp modulation. In both cases, the d.c. current to SOA2 was 68 mA and 500 µW input power was incident into coupler C1. The amplitude of the modulation signals is 1.5 V (90% duty cycle).

Fig. 7
Fig. 7

Comparison of interference signal obtained with and without modulation. OPDdiff is set to zero for this analysis. Left column: no modulation; Right column: ramp modulation. Upper row: the time domain representation; Lower row: FFT of the photodetected signal.

Fig. 8
Fig. 8

Correlation functions when light has transited the loop n times (mirror as an object).

Fig. 9
Fig. 9

Time response for an OPDdiff set at 75 μm. From one graph to the next, the axial position of the object mirror is adjusted from OPDdiff to 8OPDdiff in 8 equidistant steps. For these measurements, the AOFSs were always open and the SOAs were driven with constant currents.

Fig. 10
Fig. 10

Eight en-face OCT images acquired simultaneously from a piece of tilted white paper from depths separated by OPDdiff = 75 μm. The object beam was raster scanned with 500 lines per frame in 0.5 s. The area imaged was 3mm x 3 mm in size.

Fig. 11
Fig. 11

10 en-face OCT images acquired simultaneously from the eye of AP, depths separated by OPDdiff = 75 μm measured in air.. The object beam was raster scanned with 500 lines per frame in 0.5 s. The area imaged was 3 mm x 3 mm in size. The 11th image shows a superposition of all en-face OCT images.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SN R n P n 2 P T
P b =m(m+n1) P in

Metrics