Abstract

The resonant reflection of a free-space beam from a slab waveguide grating is rendered high bandwidth and angularly robust by using a bimodal high index waveguide. A deep double-sided corrugation gives rise to the coalescence of the resonant reflection peaks resulting in a top-hat reflection spectrum. A low-cost waveguide technology based on solar cell amorphous silicon is demonstrated in the near infrared in a polarizer application.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
    [CrossRef]
  2. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quant. Elect. 15(7), 886–887 (1985).
    [CrossRef]
  3. D. Pietroy, O. Parriaux, T. Epalle, and S. Tonchev, “Contactless functional testing of grating-coupled evanescent wave (bio)chemical sensor,” J. Sens. and Act. B: Chem. 159(1), 27–32 (2011).
    [CrossRef]
  4. N. Destouches, J. C. Pommier, O. Parriaux, T. Clausnitzer, N. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14(26), 12613–12622 (2006).
    [CrossRef] [PubMed]
  5. J. F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev, and K. Ueda, “A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B 85(4), 519–524 (2006).
    [CrossRef]
  6. E. Bonnet, A. Cachard, A. V. Tishchenko, and O. Parriaux, “Scaling rules for the design of a narrow-band grating filter at the focus of a free-space beam,” Proc. SPIE 5450, 217–222 (2004).
    [CrossRef]
  7. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23(15), 1149–1151 (1998).
    [CrossRef] [PubMed]
  8. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,” Opt. Lett. 23(9), 700–702 (1998).
    [CrossRef] [PubMed]
  9. D. Pietroy, O. Parriaux, and J. L. Stehle, “Ellipsometric retrieval of the phenomenological parameters of a waveguide grating,” Opt. Express 17(20), 18219–18228 (2009).
    [CrossRef] [PubMed]
  10. N. Lyndin, “MC Grating Software Development Company,” http://www.mcgrating.com/ .
  11. R. A Street, Hydrogenated Amorphous Silicon (Cambridge Solid State Science Series, 1998).
  12. U. Kroll, J. Meier, P. Torres, J. Pohl, and A. Shah, “From amorphous to microcrystalline silicon films prepared by hydrogen dilution using the VHF(70MHz) GD technique,” J. Non-Cryst. Sol. 227–230, 68–72 (1998).
  13. S. Tonchev, Y. Jourlin, S. Reynaud, M. Guttmann, M. Wissmann, R. Krajewski, and M. Joswik, “Photolithography of variable depth gratings on a polymer substrate for the mastering of 3D diffractive optical elements,” in proceeding of 14th Micro-Optics Conference, Brussels, Belgium (2008).

2011

D. Pietroy, O. Parriaux, T. Epalle, and S. Tonchev, “Contactless functional testing of grating-coupled evanescent wave (bio)chemical sensor,” J. Sens. and Act. B: Chem. 159(1), 27–32 (2011).
[CrossRef]

2009

2006

N. Destouches, J. C. Pommier, O. Parriaux, T. Clausnitzer, N. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14(26), 12613–12622 (2006).
[CrossRef] [PubMed]

J. F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev, and K. Ueda, “A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B 85(4), 519–524 (2006).
[CrossRef]

2004

E. Bonnet, A. Cachard, A. V. Tishchenko, and O. Parriaux, “Scaling rules for the design of a narrow-band grating filter at the focus of a free-space beam,” Proc. SPIE 5450, 217–222 (2004).
[CrossRef]

1998

1986

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
[CrossRef]

1985

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quant. Elect. 15(7), 886–887 (1985).
[CrossRef]

Bisson, J. F.

J. F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev, and K. Ueda, “A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B 85(4), 519–524 (2006).
[CrossRef]

Bonnet, E.

E. Bonnet, A. Cachard, A. V. Tishchenko, and O. Parriaux, “Scaling rules for the design of a narrow-band grating filter at the focus of a free-space beam,” Proc. SPIE 5450, 217–222 (2004).
[CrossRef]

Brundrett, D. L.

Cachard, A.

E. Bonnet, A. Cachard, A. V. Tishchenko, and O. Parriaux, “Scaling rules for the design of a narrow-band grating filter at the focus of a free-space beam,” Proc. SPIE 5450, 217–222 (2004).
[CrossRef]

Clausnitzer, T.

Destouches, N.

Epalle, T.

D. Pietroy, O. Parriaux, T. Epalle, and S. Tonchev, “Contactless functional testing of grating-coupled evanescent wave (bio)chemical sensor,” J. Sens. and Act. B: Chem. 159(1), 27–32 (2011).
[CrossRef]

Gaylord, T. K.

Giovannini, H.

Glytsis, E. N.

Golubenko, G. A.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quant. Elect. 15(7), 886–887 (1985).
[CrossRef]

Kroll, U.

U. Kroll, J. Meier, P. Torres, J. Pohl, and A. Shah, “From amorphous to microcrystalline silicon films prepared by hydrogen dilution using the VHF(70MHz) GD technique,” J. Non-Cryst. Sol. 227–230, 68–72 (1998).

Lemarchand, F.

Lyndin, N.

Mashev, L.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
[CrossRef]

Maystre, D.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
[CrossRef]

Meier, J.

U. Kroll, J. Meier, P. Torres, J. Pohl, and A. Shah, “From amorphous to microcrystalline silicon films prepared by hydrogen dilution using the VHF(70MHz) GD technique,” J. Non-Cryst. Sol. 227–230, 68–72 (1998).

Parriaux, O.

D. Pietroy, O. Parriaux, T. Epalle, and S. Tonchev, “Contactless functional testing of grating-coupled evanescent wave (bio)chemical sensor,” J. Sens. and Act. B: Chem. 159(1), 27–32 (2011).
[CrossRef]

D. Pietroy, O. Parriaux, and J. L. Stehle, “Ellipsometric retrieval of the phenomenological parameters of a waveguide grating,” Opt. Express 17(20), 18219–18228 (2009).
[CrossRef] [PubMed]

N. Destouches, J. C. Pommier, O. Parriaux, T. Clausnitzer, N. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14(26), 12613–12622 (2006).
[CrossRef] [PubMed]

J. F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev, and K. Ueda, “A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B 85(4), 519–524 (2006).
[CrossRef]

E. Bonnet, A. Cachard, A. V. Tishchenko, and O. Parriaux, “Scaling rules for the design of a narrow-band grating filter at the focus of a free-space beam,” Proc. SPIE 5450, 217–222 (2004).
[CrossRef]

Pietroy, D.

D. Pietroy, O. Parriaux, T. Epalle, and S. Tonchev, “Contactless functional testing of grating-coupled evanescent wave (bio)chemical sensor,” J. Sens. and Act. B: Chem. 159(1), 27–32 (2011).
[CrossRef]

D. Pietroy, O. Parriaux, and J. L. Stehle, “Ellipsometric retrieval of the phenomenological parameters of a waveguide grating,” Opt. Express 17(20), 18219–18228 (2009).
[CrossRef] [PubMed]

Pohl, J.

U. Kroll, J. Meier, P. Torres, J. Pohl, and A. Shah, “From amorphous to microcrystalline silicon films prepared by hydrogen dilution using the VHF(70MHz) GD technique,” J. Non-Cryst. Sol. 227–230, 68–72 (1998).

Pommier, J. C.

N. Destouches, J. C. Pommier, O. Parriaux, T. Clausnitzer, N. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14(26), 12613–12622 (2006).
[CrossRef] [PubMed]

J. F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev, and K. Ueda, “A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B 85(4), 519–524 (2006).
[CrossRef]

Popov, E.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
[CrossRef]

Sentenac, A.

Shah, A.

U. Kroll, J. Meier, P. Torres, J. Pohl, and A. Shah, “From amorphous to microcrystalline silicon films prepared by hydrogen dilution using the VHF(70MHz) GD technique,” J. Non-Cryst. Sol. 227–230, 68–72 (1998).

Stehle, J. L.

Svakhin, A. S.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quant. Elect. 15(7), 886–887 (1985).
[CrossRef]

Sychugov, V. A.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quant. Elect. 15(7), 886–887 (1985).
[CrossRef]

Tishchenko, A. V.

E. Bonnet, A. Cachard, A. V. Tishchenko, and O. Parriaux, “Scaling rules for the design of a narrow-band grating filter at the focus of a free-space beam,” Proc. SPIE 5450, 217–222 (2004).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quant. Elect. 15(7), 886–887 (1985).
[CrossRef]

Tonchev, S.

D. Pietroy, O. Parriaux, T. Epalle, and S. Tonchev, “Contactless functional testing of grating-coupled evanescent wave (bio)chemical sensor,” J. Sens. and Act. B: Chem. 159(1), 27–32 (2011).
[CrossRef]

J. F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev, and K. Ueda, “A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B 85(4), 519–524 (2006).
[CrossRef]

N. Destouches, J. C. Pommier, O. Parriaux, T. Clausnitzer, N. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14(26), 12613–12622 (2006).
[CrossRef] [PubMed]

Torres, P.

U. Kroll, J. Meier, P. Torres, J. Pohl, and A. Shah, “From amorphous to microcrystalline silicon films prepared by hydrogen dilution using the VHF(70MHz) GD technique,” J. Non-Cryst. Sol. 227–230, 68–72 (1998).

Ueda, K.

J. F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev, and K. Ueda, “A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B 85(4), 519–524 (2006).
[CrossRef]

Appl. Phys. B

J. F. Bisson, O. Parriaux, J. C. Pommier, S. Tonchev, and K. Ueda, “A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B 85(4), 519–524 (2006).
[CrossRef]

J. Non-Cryst. Sol.

U. Kroll, J. Meier, P. Torres, J. Pohl, and A. Shah, “From amorphous to microcrystalline silicon films prepared by hydrogen dilution using the VHF(70MHz) GD technique,” J. Non-Cryst. Sol. 227–230, 68–72 (1998).

J. Sens. and Act. B: Chem.

D. Pietroy, O. Parriaux, T. Epalle, and S. Tonchev, “Contactless functional testing of grating-coupled evanescent wave (bio)chemical sensor,” J. Sens. and Act. B: Chem. 159(1), 27–32 (2011).
[CrossRef]

Opt. Acta (Lond.)

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

E. Bonnet, A. Cachard, A. V. Tishchenko, and O. Parriaux, “Scaling rules for the design of a narrow-band grating filter at the focus of a free-space beam,” Proc. SPIE 5450, 217–222 (2004).
[CrossRef]

Sov. J. Quant. Elect.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quant. Elect. 15(7), 886–887 (1985).
[CrossRef]

Other

S. Tonchev, Y. Jourlin, S. Reynaud, M. Guttmann, M. Wissmann, R. Krajewski, and M. Joswik, “Photolithography of variable depth gratings on a polymer substrate for the mastering of 3D diffractive optical elements,” in proceeding of 14th Micro-Optics Conference, Brussels, Belgium (2008).

N. Lyndin, “MC Grating Software Development Company,” http://www.mcgrating.com/ .

R. A Street, Hydrogenated Amorphous Silicon (Cambridge Solid State Science Series, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

TE resonant reflection spectra under strictly normal and 1 degree incidence (a) on a typical resonant reflection grating waveguide structure (b).

Fig. 2
Fig. 2

TE resonant reflection spectra in the case of a very high index waveguide layer (a) and resonant reflection grating waveguide (b).

Fig. 3
Fig. 3

TE resonant reflection spectra versus grating period and grating depths in 2D curves (a) and 3D illustration (b).

Fig. 4
Fig. 4

TE resonant reflection spectra versus wavelength for different incidence angles. Λ = 330 nm, h = 120 nm, t = 130 nm.

Fig. 5
Fig. 5

Picture (a) and SEM image of a FIB slice (b) of the sinusoidal structure of the very high index polarizer.

Fig. 6
Fig. 6

Experimental measurement of TE and TM transmitted power (sinus phototoresist profile).

Fig. 7
Fig. 7

SEM picture of a FIB slice of the binary structure of the very high index polarizer.

Fig. 8
Fig. 8

Experimental measurement of TE and TM transmitted power (initially rectangular phototoresist profile).

Fig. 9
Fig. 9

Experimental measurements of TE and TM transmitted power for different incidence angles (non-sinusoidal, initially binary resist profile).

Metrics