Abstract

This paper introduces Split Spectrum, which enhances elastic optical networking by splitting a bulk traffic demand into multiple channels, when a single-channel transmission is prohibited by distance or spectrum availability. We performed transmission simulations to determine the maximum reach as a function of modulation format (dual polarization BPSK, QPSK, 16QAM), baud-rate (from 5 to 28 GBd), and number of ROADMs, for a Nyquist WDM super-channel with subcarrier spacing equal to 1.2 × baud-rate. Performance evaluation on two representative topologies shows that, compared to the previously proposed elastic optical networking, Split Spectrum doubles the zero-blocking load and achieves 100% higher network spectral efficiency at zero-blocking loads as a result of extended transmission distance and efficient utilization of spectrum fragments.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gringeri, E. B. Basch, and T. J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag.50(2), s21–s30 (2012).
    [CrossRef]
  2. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
    [CrossRef]
  3. S. Dahlfort, M. Xia, R. Proietti, and S. J. B. Yoo, “Split spectrum approach to elastic optical networking,” in European Conference on Optical Communication (2012), p. Tu.3.D.4.
  4. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol.29(1), 53–61 (2011).
    [CrossRef]
  5. S. Huang, M. Xia, C. Martel, and B. Mukherjee, “Survivable multipath traffic grooming in telecom mesh networks with inverse multiplexing,” J. Opt. Commun. Netw.2(8), 545–557 (2010).
    [CrossRef]
  6. Y. Yin, K. Wen, D. J. Geisler, R. Liu, and S. J. Yoo, “Dynamic on-demand defragmentation in flexible bandwidth elastic optical networks,” Opt. Express20(2), 1798–1804 (2012).
    [CrossRef] [PubMed]
  7. M. Jinno, Y. Sone, H. Takara, A. Hirano, K. Yonenaga, and S. Kawai, “IP traffic offloading to elastic optical layer using multi-flow optical transponder,” in European Conference on Optical Communication (2011), p. Mo.2.K.2.
  8. S. S. Ahuja, T. Korkmaz, and M. Krunz, “Minimizing the differential delay for virtually concatenated Ethernet over SONET systems,” in Computer Communications and Networks (2004), pp. 205–210.
  9. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  10. Y. Li, F. Zhang, and R. Casellas, “Flexible grid label format in wavelength switched optical network,” Draft-Li-CCAMP-Flexible-Grid-Label-00 (2011).

2012 (2)

S. Gringeri, E. B. Basch, and T. J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag.50(2), s21–s30 (2012).
[CrossRef]

Y. Yin, K. Wen, D. J. Geisler, R. Liu, and S. J. Yoo, “Dynamic on-demand defragmentation in flexible bandwidth elastic optical networks,” Opt. Express20(2), 1798–1804 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (1)

2009 (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

2008 (1)

Basch, E. B.

S. Gringeri, E. B. Basch, and T. J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag.50(2), s21–s30 (2012).
[CrossRef]

Bosco, G.

Carena, A.

Curri, V.

Forghieri, F.

Geisler, D. J.

Gringeri, S.

S. Gringeri, E. B. Basch, and T. J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag.50(2), s21–s30 (2012).
[CrossRef]

Huang, S.

Jinno, M.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Liu, R.

Martel, C.

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Mukherjee, B.

Poggiolini, P.

Savory, S. J.

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Wen, K.

Xia, M.

Xia, T. J.

S. Gringeri, E. B. Basch, and T. J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag.50(2), s21–s30 (2012).
[CrossRef]

Yin, Y.

Yoo, S. J.

IEEE Commun. Mag. (2)

S. Gringeri, E. B. Basch, and T. J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag.50(2), s21–s30 (2012).
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and scalable elastic optical path network: architecture, benefits, and enabling Technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

Opt. Express (2)

Other (4)

S. Dahlfort, M. Xia, R. Proietti, and S. J. B. Yoo, “Split spectrum approach to elastic optical networking,” in European Conference on Optical Communication (2012), p. Tu.3.D.4.

M. Jinno, Y. Sone, H. Takara, A. Hirano, K. Yonenaga, and S. Kawai, “IP traffic offloading to elastic optical layer using multi-flow optical transponder,” in European Conference on Optical Communication (2011), p. Mo.2.K.2.

S. S. Ahuja, T. Korkmaz, and M. Krunz, “Minimizing the differential delay for virtually concatenated Ethernet over SONET systems,” in Computer Communications and Networks (2004), pp. 205–210.

Y. Li, F. Zhang, and R. Casellas, “Flexible grid label format in wavelength switched optical network,” Draft-Li-CCAMP-Flexible-Grid-Label-00 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A sample implementation of Split-Spectrum elastic optical transponder (EOTP).

Fig. 2
Fig. 2

Simulation setup. EOTP: elastic optical transponder; WSS: wavelength selective switch; EDFA: erbium-doped fiber amplifier; SMF: single-mode fiber; L: span length; M: number of ROADMs.

Fig. 3
Fig. 3

(a) ROADMs filtering effect. (b) SER as function of the number of ROADMs. (c) Maximum distance as function of the baud-rate for different modulation formats and number of ROADMs.

Fig. 4
Fig. 4

(a): 24-node U.S. topology. (b): 28-node pan-E.U. topology. Links length is expressed in km.

Fig. 5
Fig. 5

Network load vs. Bandwidth Blocking Ratio. (a) U.S. topology; (b): pan-E.U. topology.

Fig. 6
Fig. 6

Network load vs. Network spectral efficiency. (a) U.S. topology; (b) pan-E.U. topology.

Tables (1)

Tables Icon

Table 1 Spectral efficiency vs. transmission distance

Metrics