Abstract

Adaptive mass fabrication method based on laser-induced plasmonic local surface defunctionalization was suggested to realize solution-based high resolution self-patterning on transparent substrate in parallel. After non-patterned functional monolayer was locally deactivated by laser-induced metallic plasma species, various micro/nano metal structures could be simultaneously fabricated by the parallel self-selective deposition of metal nanoparticles on a specific region. This method makes the eco-friendly and cost-effective production of high resolution pattern possible. Moreover, it can respond to design change actively due to the broad controllable range and easy change of key patterning specifications such as a resolution (subwavelength~100 μm), thickness (100 nm~6 μm), type (dot and line), and shape.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Bao, Y. Feng, A. Dodabalapur, V. R. Raju, and A. J. Lovinger, “High-performance plastic transistors fabricated by printing techniques,” Chem. Mater.9(6), 1299–1301 (1997).
    [CrossRef]
  2. C. W. Sele, T. von Werne, R. H. Friend, and H. Sirringhaus, “Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution,” Adv. Mater. (Deerfield Beach Fla.)17(8), 997–1001 (2005).
    [CrossRef]
  3. B. Kang, S. Ko, J. Kim, and M. Yang, “Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink,” Opt. Express19(3), 2573–2579 (2011).
    [CrossRef] [PubMed]
  4. D. Pile, “Organic electronics: laser-induced electrode fabrication,” Nat. Photonics5(4), 199 (2011).
    [CrossRef]
  5. B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle,” J. Phys. Chem. C115(48), 23664–23670 (2011).
    [CrossRef]
  6. B. Kang, J. Kno, and M. Yang, “High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate,” J. Micromech. Microeng.21(7), 075017 (2011).
    [CrossRef]
  7. A. Bonito, M. Picasso, and M. Laso, “Numerical simulation of 3D viscoelastic flows with free surfaces,” J. Comput. Phys.215(2), 691–716 (2006).
    [CrossRef]
  8. F. C. Krebs, “Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide,” Sol. Energy Mater. Sol. Cells93(9), 1636–1641 (2009).
    [CrossRef]
  9. T. C. M. Sotomayor, Alternative Lithography. (Springer: NewYork, 2003).
  10. S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7(7), 1869–1877 (2007).
    [CrossRef] [PubMed]
  11. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
    [CrossRef] [PubMed]
  12. R. K. Smith, P. A. Lewis, and P. S. Weiss, “Patterning self-assembled monolayers,” Prog. Surf. Sci.75(1-2), 1–68 (2004).
    [CrossRef]
  13. M. H. Lin, C. F. Chen, H. W. Shiu, C. H. Chen, and S. Gwo, “Multilength-scale chemical patterning of self-assembled monolayers by spatially controlled plasma exposure: nanometer to centimeter range,” J. Am. Chem. Soc.131(31), 10984–10991 (2009).
    [CrossRef] [PubMed]
  14. W. Chang, M. Choi, J. Kim, S. Cho, and K. Whang, “Sub-micron scale patterning using femtosecond laser and self-assembled monolayers interaction,” Appl. Surf. Sci.240(1-4), 296–304 (2005).
    [CrossRef]
  15. Y. Zhang, R. H. Terrill, T. A. Tanzer, and P. W. Bohn, “Ozonolysis is the primary cause of UV photooxidation of alkanethiolate monolayers at Low Irradiance,” J. Am. Chem. Soc.120(11), 2654–2655 (1998).
    [CrossRef]
  16. D. J. Kim, J. M. Lee, J. G. Park, and B. G. Chung, “A self-assembled monolayer-based micropatterned array for controlling cell adhesion and protein adsorption,” Biotechnol. Bioeng.108(5), 1194–1202 (2011).
    [CrossRef] [PubMed]
  17. Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction,” J. Micromech. Microeng.16(11), 2259–2264 (2006).
    [CrossRef]
  18. K. Neil, Adam, The Physics and Chemistry of Surfaces, 3rd ed. (Oxford University Press, 1941).
  19. W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, G. Min, Y. Wan, L. Shi, and S. Feng, “Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography,” Appl. Surf. Sci.255(5), 2885–2889 (2008).
    [CrossRef]
  20. R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom.19(4), 419–428 (2004).
    [CrossRef]
  21. H. R. Pakhal, R. P. Lucht, and N. M. Laurendeau, “Spectral measurements of incipient plasma temperature and electron number density during laser ablation of aluminum in air,” Appl. Phys. B90(1), 15–27 (2008).
    [CrossRef]
  22. S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(2), 026413 (2004).
    [CrossRef] [PubMed]
  23. B. Wu, Y. C. Shin, H. Pakhal, N. M. Laurendeau, and R. P. Lucht, “Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(2 Pt 2), 026405 (2007).
    [CrossRef] [PubMed]
  24. B. Wu, “High-intensity nanosecond-pulsed laser-induced plasma in air, water, and vacuum: A comparative study of the early-stage evolution using a physics-based predictive model,” Appl. Phys. Lett.93(10), 101104 (2008).
    [CrossRef]
  25. X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express18(25), 26007–26017 (2010).
    [CrossRef] [PubMed]
  26. S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulos, J. Chung, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett.89(14), 141126 (2006).
    [CrossRef]
  27. J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, “Conductor microstructures by laser curing of printed gold nanoparticle ink,” Appl. Phys. Lett.84(5), 801–803 (2004).
    [CrossRef]
  28. H. W. Fox and W. A. Zisman, “The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene,” J. Colloid Sci.5(6), 514–531 (1950).
    [CrossRef]
  29. B. Medasani, Y. H. Park, and I. Vasiliev, “Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles,” Phys. Rev. B75(23), 235436 (2007).
    [CrossRef]
  30. H. Y. Ko, J. Park, H. Shin, and J. Moon, “Rapid self-assembly of monodisperse colloidal spheres in an ink-jet printed droplet,” Chem. Mater.16(22), 4212–4215 (2004).
    [CrossRef]

2011 (5)

D. Pile, “Organic electronics: laser-induced electrode fabrication,” Nat. Photonics5(4), 199 (2011).
[CrossRef]

B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle,” J. Phys. Chem. C115(48), 23664–23670 (2011).
[CrossRef]

B. Kang, J. Kno, and M. Yang, “High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate,” J. Micromech. Microeng.21(7), 075017 (2011).
[CrossRef]

D. J. Kim, J. M. Lee, J. G. Park, and B. G. Chung, “A self-assembled monolayer-based micropatterned array for controlling cell adhesion and protein adsorption,” Biotechnol. Bioeng.108(5), 1194–1202 (2011).
[CrossRef] [PubMed]

B. Kang, S. Ko, J. Kim, and M. Yang, “Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink,” Opt. Express19(3), 2573–2579 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (2)

M. H. Lin, C. F. Chen, H. W. Shiu, C. H. Chen, and S. Gwo, “Multilength-scale chemical patterning of self-assembled monolayers by spatially controlled plasma exposure: nanometer to centimeter range,” J. Am. Chem. Soc.131(31), 10984–10991 (2009).
[CrossRef] [PubMed]

F. C. Krebs, “Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide,” Sol. Energy Mater. Sol. Cells93(9), 1636–1641 (2009).
[CrossRef]

2008 (3)

W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, G. Min, Y. Wan, L. Shi, and S. Feng, “Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography,” Appl. Surf. Sci.255(5), 2885–2889 (2008).
[CrossRef]

H. R. Pakhal, R. P. Lucht, and N. M. Laurendeau, “Spectral measurements of incipient plasma temperature and electron number density during laser ablation of aluminum in air,” Appl. Phys. B90(1), 15–27 (2008).
[CrossRef]

B. Wu, “High-intensity nanosecond-pulsed laser-induced plasma in air, water, and vacuum: A comparative study of the early-stage evolution using a physics-based predictive model,” Appl. Phys. Lett.93(10), 101104 (2008).
[CrossRef]

2007 (3)

B. Medasani, Y. H. Park, and I. Vasiliev, “Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles,” Phys. Rev. B75(23), 235436 (2007).
[CrossRef]

B. Wu, Y. C. Shin, H. Pakhal, N. M. Laurendeau, and R. P. Lucht, “Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(2 Pt 2), 026405 (2007).
[CrossRef] [PubMed]

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7(7), 1869–1877 (2007).
[CrossRef] [PubMed]

2006 (3)

A. Bonito, M. Picasso, and M. Laso, “Numerical simulation of 3D viscoelastic flows with free surfaces,” J. Comput. Phys.215(2), 691–716 (2006).
[CrossRef]

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction,” J. Micromech. Microeng.16(11), 2259–2264 (2006).
[CrossRef]

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulos, J. Chung, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett.89(14), 141126 (2006).
[CrossRef]

2005 (3)

C. W. Sele, T. von Werne, R. H. Friend, and H. Sirringhaus, “Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution,” Adv. Mater. (Deerfield Beach Fla.)17(8), 997–1001 (2005).
[CrossRef]

W. Chang, M. Choi, J. Kim, S. Cho, and K. Whang, “Sub-micron scale patterning using femtosecond laser and self-assembled monolayers interaction,” Appl. Surf. Sci.240(1-4), 296–304 (2005).
[CrossRef]

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

2004 (5)

R. K. Smith, P. A. Lewis, and P. S. Weiss, “Patterning self-assembled monolayers,” Prog. Surf. Sci.75(1-2), 1–68 (2004).
[CrossRef]

S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(2), 026413 (2004).
[CrossRef] [PubMed]

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom.19(4), 419–428 (2004).
[CrossRef]

H. Y. Ko, J. Park, H. Shin, and J. Moon, “Rapid self-assembly of monodisperse colloidal spheres in an ink-jet printed droplet,” Chem. Mater.16(22), 4212–4215 (2004).
[CrossRef]

J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, “Conductor microstructures by laser curing of printed gold nanoparticle ink,” Appl. Phys. Lett.84(5), 801–803 (2004).
[CrossRef]

1998 (1)

Y. Zhang, R. H. Terrill, T. A. Tanzer, and P. W. Bohn, “Ozonolysis is the primary cause of UV photooxidation of alkanethiolate monolayers at Low Irradiance,” J. Am. Chem. Soc.120(11), 2654–2655 (1998).
[CrossRef]

1997 (1)

Z. Bao, Y. Feng, A. Dodabalapur, V. R. Raju, and A. J. Lovinger, “High-performance plastic transistors fabricated by printing techniques,” Chem. Mater.9(6), 1299–1301 (1997).
[CrossRef]

1950 (1)

H. W. Fox and W. A. Zisman, “The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene,” J. Colloid Sci.5(6), 514–531 (1950).
[CrossRef]

Bao, Z.

Z. Bao, Y. Feng, A. Dodabalapur, V. R. Raju, and A. J. Lovinger, “High-performance plastic transistors fabricated by printing techniques,” Chem. Mater.9(6), 1299–1301 (1997).
[CrossRef]

Benecke, W.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction,” J. Micromech. Microeng.16(11), 2259–2264 (2006).
[CrossRef]

Bieri, N. R.

J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, “Conductor microstructures by laser curing of printed gold nanoparticle ink,” Appl. Phys. Lett.84(5), 801–803 (2004).
[CrossRef]

Bindhu, C. V.

S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(2), 026413 (2004).
[CrossRef] [PubMed]

Bohn, P. W.

Y. Zhang, R. H. Terrill, T. A. Tanzer, and P. W. Bohn, “Ozonolysis is the primary cause of UV photooxidation of alkanethiolate monolayers at Low Irradiance,” J. Am. Chem. Soc.120(11), 2654–2655 (1998).
[CrossRef]

Bonito, A.

A. Bonito, M. Picasso, and M. Laso, “Numerical simulation of 3D viscoelastic flows with free surfaces,” J. Comput. Phys.215(2), 691–716 (2006).
[CrossRef]

Chang, W.

W. Chang, M. Choi, J. Kim, S. Cho, and K. Whang, “Sub-micron scale patterning using femtosecond laser and self-assembled monolayers interaction,” Appl. Surf. Sci.240(1-4), 296–304 (2005).
[CrossRef]

Chen, C. F.

M. H. Lin, C. F. Chen, H. W. Shiu, C. H. Chen, and S. Gwo, “Multilength-scale chemical patterning of self-assembled monolayers by spatially controlled plasma exposure: nanometer to centimeter range,” J. Am. Chem. Soc.131(31), 10984–10991 (2009).
[CrossRef] [PubMed]

Chen, C. H.

M. H. Lin, C. F. Chen, H. W. Shiu, C. H. Chen, and S. Gwo, “Multilength-scale chemical patterning of self-assembled monolayers by spatially controlled plasma exposure: nanometer to centimeter range,” J. Am. Chem. Soc.131(31), 10984–10991 (2009).
[CrossRef] [PubMed]

Cho, S.

W. Chang, M. Choi, J. Kim, S. Cho, and K. Whang, “Sub-micron scale patterning using femtosecond laser and self-assembled monolayers interaction,” Appl. Surf. Sci.240(1-4), 296–304 (2005).
[CrossRef]

Choi, M.

W. Chang, M. Choi, J. Kim, S. Cho, and K. Whang, “Sub-micron scale patterning using femtosecond laser and self-assembled monolayers interaction,” Appl. Surf. Sci.240(1-4), 296–304 (2005).
[CrossRef]

Choi, Y.

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulos, J. Chung, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett.89(14), 141126 (2006).
[CrossRef]

Chung, B. G.

D. J. Kim, J. M. Lee, J. G. Park, and B. G. Chung, “A self-assembled monolayer-based micropatterned array for controlling cell adhesion and protein adsorption,” Biotechnol. Bioeng.108(5), 1194–1202 (2011).
[CrossRef] [PubMed]

Chung, J.

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulos, J. Chung, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett.89(14), 141126 (2006).
[CrossRef]

J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, “Conductor microstructures by laser curing of printed gold nanoparticle ink,” Appl. Phys. Lett.84(5), 801–803 (2004).
[CrossRef]

Dodabalapur, A.

Z. Bao, Y. Feng, A. Dodabalapur, V. R. Raju, and A. J. Lovinger, “High-performance plastic transistors fabricated by printing techniques,” Chem. Mater.9(6), 1299–1301 (1997).
[CrossRef]

Estroff, L. A.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

Feng, S.

W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, G. Min, Y. Wan, L. Shi, and S. Feng, “Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography,” Appl. Surf. Sci.255(5), 2885–2889 (2008).
[CrossRef]

Feng, Y.

Z. Bao, Y. Feng, A. Dodabalapur, V. R. Raju, and A. J. Lovinger, “High-performance plastic transistors fabricated by printing techniques,” Chem. Mater.9(6), 1299–1301 (1997).
[CrossRef]

Fox, H. W.

H. W. Fox and W. A. Zisman, “The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene,” J. Colloid Sci.5(6), 514–531 (1950).
[CrossRef]

Fréchet, J. M. J.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7(7), 1869–1877 (2007).
[CrossRef] [PubMed]

Friend, R. H.

C. W. Sele, T. von Werne, R. H. Friend, and H. Sirringhaus, “Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution,” Adv. Mater. (Deerfield Beach Fla.)17(8), 997–1001 (2005).
[CrossRef]

Grigoropoulos, C. P.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7(7), 1869–1877 (2007).
[CrossRef] [PubMed]

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulos, J. Chung, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett.89(14), 141126 (2006).
[CrossRef]

J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, “Conductor microstructures by laser curing of printed gold nanoparticle ink,” Appl. Phys. Lett.84(5), 801–803 (2004).
[CrossRef]

Gwo, S.

M. H. Lin, C. F. Chen, H. W. Shiu, C. H. Chen, and S. Gwo, “Multilength-scale chemical patterning of self-assembled monolayers by spatially controlled plasma exposure: nanometer to centimeter range,” J. Am. Chem. Soc.131(31), 10984–10991 (2009).
[CrossRef] [PubMed]

Han, S.

B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle,” J. Phys. Chem. C115(48), 23664–23670 (2011).
[CrossRef]

Hansen, O.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction,” J. Micromech. Microeng.16(11), 2259–2264 (2006).
[CrossRef]

Harilal, S. S.

S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(2), 026413 (2004).
[CrossRef] [PubMed]

Hwang, D. J.

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulos, J. Chung, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett.89(14), 141126 (2006).
[CrossRef]

Kang, B.

B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle,” J. Phys. Chem. C115(48), 23664–23670 (2011).
[CrossRef]

B. Kang, S. Ko, J. Kim, and M. Yang, “Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink,” Opt. Express19(3), 2573–2579 (2011).
[CrossRef] [PubMed]

B. Kang, J. Kno, and M. Yang, “High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate,” J. Micromech. Microeng.21(7), 075017 (2011).
[CrossRef]

Kehlenbeck, M.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction,” J. Micromech. Microeng.16(11), 2259–2264 (2006).
[CrossRef]

Kim, D. J.

D. J. Kim, J. M. Lee, J. G. Park, and B. G. Chung, “A self-assembled monolayer-based micropatterned array for controlling cell adhesion and protein adsorption,” Biotechnol. Bioeng.108(5), 1194–1202 (2011).
[CrossRef] [PubMed]

Kim, J.

B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle,” J. Phys. Chem. C115(48), 23664–23670 (2011).
[CrossRef]

B. Kang, S. Ko, J. Kim, and M. Yang, “Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink,” Opt. Express19(3), 2573–2579 (2011).
[CrossRef] [PubMed]

W. Chang, M. Choi, J. Kim, S. Cho, and K. Whang, “Sub-micron scale patterning using femtosecond laser and self-assembled monolayers interaction,” Appl. Surf. Sci.240(1-4), 296–304 (2005).
[CrossRef]

Knieling, T.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction,” J. Micromech. Microeng.16(11), 2259–2264 (2006).
[CrossRef]

Kno, J.

B. Kang, J. Kno, and M. Yang, “High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate,” J. Micromech. Microeng.21(7), 075017 (2011).
[CrossRef]

Ko, H. Y.

H. Y. Ko, J. Park, H. Shin, and J. Moon, “Rapid self-assembly of monodisperse colloidal spheres in an ink-jet printed droplet,” Chem. Mater.16(22), 4212–4215 (2004).
[CrossRef]

Ko, S.

B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle,” J. Phys. Chem. C115(48), 23664–23670 (2011).
[CrossRef]

B. Kang, S. Ko, J. Kim, and M. Yang, “Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink,” Opt. Express19(3), 2573–2579 (2011).
[CrossRef] [PubMed]

J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, “Conductor microstructures by laser curing of printed gold nanoparticle ink,” Appl. Phys. Lett.84(5), 801–803 (2004).
[CrossRef]

Ko, S. H.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7(7), 1869–1877 (2007).
[CrossRef] [PubMed]

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulos, J. Chung, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett.89(14), 141126 (2006).
[CrossRef]

Koblitz, J.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction,” J. Micromech. Microeng.16(11), 2259–2264 (2006).
[CrossRef]

Krebs, F. C.

F. C. Krebs, “Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide,” Sol. Energy Mater. Sol. Cells93(9), 1636–1641 (2009).
[CrossRef]

Kriebel, J. K.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

Lang, W.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction,” J. Micromech. Microeng.16(11), 2259–2264 (2006).
[CrossRef]

Laso, M.

A. Bonito, M. Picasso, and M. Laso, “Numerical simulation of 3D viscoelastic flows with free surfaces,” J. Comput. Phys.215(2), 691–716 (2006).
[CrossRef]

Laurendeau, N. M.

H. R. Pakhal, R. P. Lucht, and N. M. Laurendeau, “Spectral measurements of incipient plasma temperature and electron number density during laser ablation of aluminum in air,” Appl. Phys. B90(1), 15–27 (2008).
[CrossRef]

B. Wu, Y. C. Shin, H. Pakhal, N. M. Laurendeau, and R. P. Lucht, “Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(2 Pt 2), 026405 (2007).
[CrossRef] [PubMed]

Lee, J. M.

D. J. Kim, J. M. Lee, J. G. Park, and B. G. Chung, “A self-assembled monolayer-based micropatterned array for controlling cell adhesion and protein adsorption,” Biotechnol. Bioeng.108(5), 1194–1202 (2011).
[CrossRef] [PubMed]

Lewis, P. A.

R. K. Smith, P. A. Lewis, and P. S. Weiss, “Patterning self-assembled monolayers,” Prog. Surf. Sci.75(1-2), 1–68 (2004).
[CrossRef]

Li, X.

W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, G. Min, Y. Wan, L. Shi, and S. Feng, “Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography,” Appl. Surf. Sci.255(5), 2885–2889 (2008).
[CrossRef]

Lin, M. H.

M. H. Lin, C. F. Chen, H. W. Shiu, C. H. Chen, and S. Gwo, “Multilength-scale chemical patterning of self-assembled monolayers by spatially controlled plasma exposure: nanometer to centimeter range,” J. Am. Chem. Soc.131(31), 10984–10991 (2009).
[CrossRef] [PubMed]

Liu, F.

Liu, X.

Liu, X. L.

Liu, Y.

W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, G. Min, Y. Wan, L. Shi, and S. Feng, “Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography,” Appl. Surf. Sci.255(5), 2885–2889 (2008).
[CrossRef]

Love, J. C.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

Lovinger, A. J.

Z. Bao, Y. Feng, A. Dodabalapur, V. R. Raju, and A. J. Lovinger, “High-performance plastic transistors fabricated by printing techniques,” Chem. Mater.9(6), 1299–1301 (1997).
[CrossRef]

Lu, X.

Lucht, R. P.

H. R. Pakhal, R. P. Lucht, and N. M. Laurendeau, “Spectral measurements of incipient plasma temperature and electron number density during laser ablation of aluminum in air,” Appl. Phys. B90(1), 15–27 (2008).
[CrossRef]

B. Wu, Y. C. Shin, H. Pakhal, N. M. Laurendeau, and R. P. Lucht, “Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(2 Pt 2), 026405 (2007).
[CrossRef] [PubMed]

Luscombe, C. K.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7(7), 1869–1877 (2007).
[CrossRef] [PubMed]

Ma, J. L.

Medasani, B.

B. Medasani, Y. H. Park, and I. Vasiliev, “Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles,” Phys. Rev. B75(23), 235436 (2007).
[CrossRef]

Min, G.

W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, G. Min, Y. Wan, L. Shi, and S. Feng, “Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography,” Appl. Surf. Sci.255(5), 2885–2889 (2008).
[CrossRef]

Moon, J.

H. Y. Ko, J. Park, H. Shin, and J. Moon, “Rapid self-assembly of monodisperse colloidal spheres in an ink-jet printed droplet,” Chem. Mater.16(22), 4212–4215 (2004).
[CrossRef]

Najmabadi, F.

S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(2), 026413 (2004).
[CrossRef] [PubMed]

Niu, X.

W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, G. Min, Y. Wan, L. Shi, and S. Feng, “Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography,” Appl. Surf. Sci.255(5), 2885–2889 (2008).
[CrossRef]

Noll, R.

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom.19(4), 419–428 (2004).
[CrossRef]

Nuzzo, R. G.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

O’Shay, B.

S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(2), 026413 (2004).
[CrossRef] [PubMed]

Pakhal, H.

B. Wu, Y. C. Shin, H. Pakhal, N. M. Laurendeau, and R. P. Lucht, “Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(2 Pt 2), 026405 (2007).
[CrossRef] [PubMed]

Pakhal, H. R.

H. R. Pakhal, R. P. Lucht, and N. M. Laurendeau, “Spectral measurements of incipient plasma temperature and electron number density during laser ablation of aluminum in air,” Appl. Phys. B90(1), 15–27 (2008).
[CrossRef]

Pan, H.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7(7), 1869–1877 (2007).
[CrossRef] [PubMed]

Park, I.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7(7), 1869–1877 (2007).
[CrossRef] [PubMed]

Park, J.

H. Y. Ko, J. Park, H. Shin, and J. Moon, “Rapid self-assembly of monodisperse colloidal spheres in an ink-jet printed droplet,” Chem. Mater.16(22), 4212–4215 (2004).
[CrossRef]

Park, J. G.

D. J. Kim, J. M. Lee, J. G. Park, and B. G. Chung, “A self-assembled monolayer-based micropatterned array for controlling cell adhesion and protein adsorption,” Biotechnol. Bioeng.108(5), 1194–1202 (2011).
[CrossRef] [PubMed]

Park, Y. H.

B. Medasani, Y. H. Park, and I. Vasiliev, “Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles,” Phys. Rev. B75(23), 235436 (2007).
[CrossRef]

Picasso, M.

A. Bonito, M. Picasso, and M. Laso, “Numerical simulation of 3D viscoelastic flows with free surfaces,” J. Comput. Phys.215(2), 691–716 (2006).
[CrossRef]

Pile, D.

D. Pile, “Organic electronics: laser-induced electrode fabrication,” Nat. Photonics5(4), 199 (2011).
[CrossRef]

Pisano, A. P.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7(7), 1869–1877 (2007).
[CrossRef] [PubMed]

Poulikakos, D.

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulos, J. Chung, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett.89(14), 141126 (2006).
[CrossRef]

J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, “Conductor microstructures by laser curing of printed gold nanoparticle ink,” Appl. Phys. Lett.84(5), 801–803 (2004).
[CrossRef]

Raju, V. R.

Z. Bao, Y. Feng, A. Dodabalapur, V. R. Raju, and A. J. Lovinger, “High-performance plastic transistors fabricated by printing techniques,” Chem. Mater.9(6), 1299–1301 (1997).
[CrossRef]

Rombach, P.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction,” J. Micromech. Microeng.16(11), 2259–2264 (2006).
[CrossRef]

Sattmann, R.

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom.19(4), 419–428 (2004).
[CrossRef]

Sele, C. W.

C. W. Sele, T. von Werne, R. H. Friend, and H. Sirringhaus, “Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution,” Adv. Mater. (Deerfield Beach Fla.)17(8), 997–1001 (2005).
[CrossRef]

Shi, L.

W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, G. Min, Y. Wan, L. Shi, and S. Feng, “Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography,” Appl. Surf. Sci.255(5), 2885–2889 (2008).
[CrossRef]

Shin, H.

H. Y. Ko, J. Park, H. Shin, and J. Moon, “Rapid self-assembly of monodisperse colloidal spheres in an ink-jet printed droplet,” Chem. Mater.16(22), 4212–4215 (2004).
[CrossRef]

Shin, Y. C.

B. Wu, Y. C. Shin, H. Pakhal, N. M. Laurendeau, and R. P. Lucht, “Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(2 Pt 2), 026405 (2007).
[CrossRef] [PubMed]

Shiu, H. W.

M. H. Lin, C. F. Chen, H. W. Shiu, C. H. Chen, and S. Gwo, “Multilength-scale chemical patterning of self-assembled monolayers by spatially controlled plasma exposure: nanometer to centimeter range,” J. Am. Chem. Soc.131(31), 10984–10991 (2009).
[CrossRef] [PubMed]

Sirringhaus, H.

C. W. Sele, T. von Werne, R. H. Friend, and H. Sirringhaus, “Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution,” Adv. Mater. (Deerfield Beach Fla.)17(8), 997–1001 (2005).
[CrossRef]

Smith, R. K.

R. K. Smith, P. A. Lewis, and P. S. Weiss, “Patterning self-assembled monolayers,” Prog. Surf. Sci.75(1-2), 1–68 (2004).
[CrossRef]

Song, Z.

W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, G. Min, Y. Wan, L. Shi, and S. Feng, “Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography,” Appl. Surf. Sci.255(5), 2885–2889 (2008).
[CrossRef]

Sturm, V.

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom.19(4), 419–428 (2004).
[CrossRef]

Tanzer, T. A.

Y. Zhang, R. H. Terrill, T. A. Tanzer, and P. W. Bohn, “Ozonolysis is the primary cause of UV photooxidation of alkanethiolate monolayers at Low Irradiance,” J. Am. Chem. Soc.120(11), 2654–2655 (1998).
[CrossRef]

Terrill, R. H.

Y. Zhang, R. H. Terrill, T. A. Tanzer, and P. W. Bohn, “Ozonolysis is the primary cause of UV photooxidation of alkanethiolate monolayers at Low Irradiance,” J. Am. Chem. Soc.120(11), 2654–2655 (1998).
[CrossRef]

Tillack, M. S.

S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(2), 026413 (2004).
[CrossRef] [PubMed]

Vasiliev, I.

B. Medasani, Y. H. Park, and I. Vasiliev, “Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles,” Phys. Rev. B75(23), 235436 (2007).
[CrossRef]

von Werne, T.

C. W. Sele, T. von Werne, R. H. Friend, and H. Sirringhaus, “Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution,” Adv. Mater. (Deerfield Beach Fla.)17(8), 997–1001 (2005).
[CrossRef]

Wan, Y.

W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, G. Min, Y. Wan, L. Shi, and S. Feng, “Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography,” Appl. Surf. Sci.255(5), 2885–2889 (2008).
[CrossRef]

Wang, C.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction,” J. Micromech. Microeng.16(11), 2259–2264 (2006).
[CrossRef]

Weiss, P. S.

R. K. Smith, P. A. Lewis, and P. S. Weiss, “Patterning self-assembled monolayers,” Prog. Surf. Sci.75(1-2), 1–68 (2004).
[CrossRef]

Whang, K.

W. Chang, M. Choi, J. Kim, S. Cho, and K. Whang, “Sub-micron scale patterning using femtosecond laser and self-assembled monolayers interaction,” Appl. Surf. Sci.240(1-4), 296–304 (2005).
[CrossRef]

Whitesides, G. M.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

Winkelmann, S.

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom.19(4), 419–428 (2004).
[CrossRef]

Wu, B.

B. Wu, “High-intensity nanosecond-pulsed laser-induced plasma in air, water, and vacuum: A comparative study of the early-stage evolution using a physics-based predictive model,” Appl. Phys. Lett.93(10), 101104 (2008).
[CrossRef]

B. Wu, Y. C. Shin, H. Pakhal, N. M. Laurendeau, and R. P. Lucht, “Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(2 Pt 2), 026405 (2007).
[CrossRef] [PubMed]

Xi, T. T.

Yang, M.

B. Kang, S. Ko, J. Kim, and M. Yang, “Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink,” Opt. Express19(3), 2573–2579 (2011).
[CrossRef] [PubMed]

B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle,” J. Phys. Chem. C115(48), 23664–23670 (2011).
[CrossRef]

B. Kang, J. Kno, and M. Yang, “High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate,” J. Micromech. Microeng.21(7), 075017 (2011).
[CrossRef]

Zhang, J.

X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express18(25), 26007–26017 (2010).
[CrossRef] [PubMed]

W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, G. Min, Y. Wan, L. Shi, and S. Feng, “Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography,” Appl. Surf. Sci.255(5), 2885–2889 (2008).
[CrossRef]

Zhang, Y.

Y. Zhang, R. H. Terrill, T. A. Tanzer, and P. W. Bohn, “Ozonolysis is the primary cause of UV photooxidation of alkanethiolate monolayers at Low Irradiance,” J. Am. Chem. Soc.120(11), 2654–2655 (1998).
[CrossRef]

Zhou, W.

W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, G. Min, Y. Wan, L. Shi, and S. Feng, “Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography,” Appl. Surf. Sci.255(5), 2885–2889 (2008).
[CrossRef]

Zhuang, Y. X.

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction,” J. Micromech. Microeng.16(11), 2259–2264 (2006).
[CrossRef]

Zisman, W. A.

H. W. Fox and W. A. Zisman, “The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene,” J. Colloid Sci.5(6), 514–531 (1950).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

C. W. Sele, T. von Werne, R. H. Friend, and H. Sirringhaus, “Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution,” Adv. Mater. (Deerfield Beach Fla.)17(8), 997–1001 (2005).
[CrossRef]

Appl. Phys. B (1)

H. R. Pakhal, R. P. Lucht, and N. M. Laurendeau, “Spectral measurements of incipient plasma temperature and electron number density during laser ablation of aluminum in air,” Appl. Phys. B90(1), 15–27 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

B. Wu, “High-intensity nanosecond-pulsed laser-induced plasma in air, water, and vacuum: A comparative study of the early-stage evolution using a physics-based predictive model,” Appl. Phys. Lett.93(10), 101104 (2008).
[CrossRef]

S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulos, J. Chung, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett.89(14), 141126 (2006).
[CrossRef]

J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, “Conductor microstructures by laser curing of printed gold nanoparticle ink,” Appl. Phys. Lett.84(5), 801–803 (2004).
[CrossRef]

Appl. Surf. Sci. (2)

W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, G. Min, Y. Wan, L. Shi, and S. Feng, “Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography,” Appl. Surf. Sci.255(5), 2885–2889 (2008).
[CrossRef]

W. Chang, M. Choi, J. Kim, S. Cho, and K. Whang, “Sub-micron scale patterning using femtosecond laser and self-assembled monolayers interaction,” Appl. Surf. Sci.240(1-4), 296–304 (2005).
[CrossRef]

Biotechnol. Bioeng. (1)

D. J. Kim, J. M. Lee, J. G. Park, and B. G. Chung, “A self-assembled monolayer-based micropatterned array for controlling cell adhesion and protein adsorption,” Biotechnol. Bioeng.108(5), 1194–1202 (2011).
[CrossRef] [PubMed]

Chem. Mater. (2)

H. Y. Ko, J. Park, H. Shin, and J. Moon, “Rapid self-assembly of monodisperse colloidal spheres in an ink-jet printed droplet,” Chem. Mater.16(22), 4212–4215 (2004).
[CrossRef]

Z. Bao, Y. Feng, A. Dodabalapur, V. R. Raju, and A. J. Lovinger, “High-performance plastic transistors fabricated by printing techniques,” Chem. Mater.9(6), 1299–1301 (1997).
[CrossRef]

Chem. Rev. (1)

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (2)

Y. Zhang, R. H. Terrill, T. A. Tanzer, and P. W. Bohn, “Ozonolysis is the primary cause of UV photooxidation of alkanethiolate monolayers at Low Irradiance,” J. Am. Chem. Soc.120(11), 2654–2655 (1998).
[CrossRef]

M. H. Lin, C. F. Chen, H. W. Shiu, C. H. Chen, and S. Gwo, “Multilength-scale chemical patterning of self-assembled monolayers by spatially controlled plasma exposure: nanometer to centimeter range,” J. Am. Chem. Soc.131(31), 10984–10991 (2009).
[CrossRef] [PubMed]

J. Anal. At. Spectrom. (1)

R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom.19(4), 419–428 (2004).
[CrossRef]

J. Colloid Sci. (1)

H. W. Fox and W. A. Zisman, “The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene,” J. Colloid Sci.5(6), 514–531 (1950).
[CrossRef]

J. Comput. Phys. (1)

A. Bonito, M. Picasso, and M. Laso, “Numerical simulation of 3D viscoelastic flows with free surfaces,” J. Comput. Phys.215(2), 691–716 (2006).
[CrossRef]

J. Micromech. Microeng. (2)

B. Kang, J. Kno, and M. Yang, “High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate,” J. Micromech. Microeng.21(7), 075017 (2011).
[CrossRef]

Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction,” J. Micromech. Microeng.16(11), 2259–2264 (2006).
[CrossRef]

J. Phys. Chem. C (1)

B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle,” J. Phys. Chem. C115(48), 23664–23670 (2011).
[CrossRef]

Nano Lett. (1)

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7(7), 1869–1877 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. Pile, “Organic electronics: laser-induced electrode fabrication,” Nat. Photonics5(4), 199 (2011).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

B. Medasani, Y. H. Park, and I. Vasiliev, “Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles,” Phys. Rev. B75(23), 235436 (2007).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(2), 026413 (2004).
[CrossRef] [PubMed]

B. Wu, Y. C. Shin, H. Pakhal, N. M. Laurendeau, and R. P. Lucht, “Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(2 Pt 2), 026405 (2007).
[CrossRef] [PubMed]

Prog. Surf. Sci. (1)

R. K. Smith, P. A. Lewis, and P. S. Weiss, “Patterning self-assembled monolayers,” Prog. Surf. Sci.75(1-2), 1–68 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

F. C. Krebs, “Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide,” Sol. Energy Mater. Sol. Cells93(9), 1636–1641 (2009).
[CrossRef]

Other (2)

T. C. M. Sotomayor, Alternative Lithography. (Springer: NewYork, 2003).

K. Neil, Adam, The Physics and Chemistry of Surfaces, 3rd ed. (Oxford University Press, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of proposed process: (a) Experimental setup and selective defuctionalization by laser induced plasma. (b) Self-patterning of Ag NPs on selective defunctionalized substrate by immersion. The inset is TEM image of Ag NPs (scale = 100 nm).

Fig. 2
Fig. 2

(a) Atomic force microscope image of (i) liquid phase deposited SAM and (ii) vacuum phase deposited one. (b) Contact angle of Ag nanopraticle solution in the ambient temperature and 4 °C on FOTS.

Fig. 3
Fig. 3

(a) SEM image of defunctionalized substrate processed at 200 ns pulse width, 60 μJ pulse energy, 2 kHz repetition rate, and 250 mm/s scan rate. (b) Microscopic images of defunctionalized substrate partially immersed in Ag NPs at a pulse width of 30 μJ and a laser pulse width of (i) 200 ns, (ii) 100 ns, and (iii) 50 ns. (c) Size variation of self-deposited dot pattern with laser pulse width. The inset is corresponding microscope images.

Fig. 4
Fig. 4

(a) Arbitrary continuous pattern fabricated at a laser spot size of 25 μm, a pulse width of 14 ns, a pulse energy of 30 μJ, a scanning rate of 170 mm/s and a pulse repetition rate (PRR) of 7.5 kHz. (b) Microscope and SEM images of self-patterned dot patterns with a pulse energy of (i) 2 μJ, (ii) 1 μJ and (iii) 0.7 μJ at a spot size of 10 μm. (c) Microscope and photograph of self-patterned line patterns at a pulse energy of 1 μJ, a pulse width of 14 ns, PRR of 20 kHz and a scan rate of 170 mm/s.

Fig. 5
Fig. 5

(a) Thermogravimetry analysis (TGA) of the prepared Ag nanoparticle solution. The inset is SEM images of (i) pre-baked Ag NPs and (ii) sintered one. (b) Thickness variation of self-deposited pattern with immersing time and cross sectional SEM images of pattern at one and nine times immersing. (c) Cross-sectional SEM image of Ag pattern after the re-coating process of 50 times.

Metrics