Abstract

A compact and electric tuning microwave source based on a diode-pumped composite Nd:YAG-LiNbO3 cavity microchip laser is demonstrated. The electro-optical element introduces an electric tuning intra-cavity birefringence which causes a tunable frequency difference between two spilt orthogonal polarization states of a longitude mode. Thus a continuously tunable microwave signal with frequency up to 14.12 GHz can be easily generated by beating the two polarization modes on a high speed photodetector.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett.21(7), 480–482 (2009).
    [CrossRef]
  2. C. N. Huang, H. Guo, Y. Li, and S. H. Zhang, “A novel tunable dual-frequency laser with large frequency difference,” Chin. J. Laser B11, 251–254 (2002).
  3. J. Le Gouët, L. Morvan, M. Alouini, J. Bourderionnet, D. Dolfi, and J. P. Huignard, “Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tunability,” Opt. Lett.32(9), 1090–1092 (2007).
    [CrossRef] [PubMed]
  4. R. Wang and Y. Li, “Dual-polarization spatial-hole-burning-free microchip laser,” IEEE Photon. Technol. Lett.21(17), 1214–1216 (2009).
    [CrossRef]
  5. M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 µm,” Opt. Lett.30(18), 2418–2420 (2005).
    [CrossRef] [PubMed]
  6. J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron.26(12), 2052–2057 (1990).
    [CrossRef]
  7. I. E. Ievlev, I. V. Koryukin, Y. S. Lebedeva, and P. A. Khandokhin, “Continuous two-wave lasing in microchip Nd:YAG lasers,” Quantum Electron.41(8), 715–721 (2011).
    [CrossRef]
  8. A. McKay, J. Dawes, P. Dekker, and D. Courts, “A comparison of tunable, passively-stabilized two-frequency solid-state lasers for microwave generation,” IEEE Int. Top. Mtg. on Microwave Photonics (Korea 2005), pp.161–164.
  9. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett.13(4), 367–369 (2001).
    [CrossRef]
  10. R. A. Witte, Spectrum and Network Measurements (SciTech Publishing, 2001), Chap. 8.
  11. A. McKay, P. Dekker, D. W. Coutts, and J. M. Dawes, “Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser,” Opt. Commun.272(2), 425–430 (2007).
    [CrossRef]
  12. G. Bouwmans, B. Segard, P. Glorieux, P. A. Khandokhin, N. D. Milovsky, and E. Shirokov, “Polarization dynamics of longitudinally monomode bipolarized microchip solid-state lasers,” Radiophys and Quantum Electron.47, 729–742 (2004).
    [CrossRef]

2011 (1)

I. E. Ievlev, I. V. Koryukin, Y. S. Lebedeva, and P. A. Khandokhin, “Continuous two-wave lasing in microchip Nd:YAG lasers,” Quantum Electron.41(8), 715–721 (2011).
[CrossRef]

2009 (2)

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett.21(7), 480–482 (2009).
[CrossRef]

R. Wang and Y. Li, “Dual-polarization spatial-hole-burning-free microchip laser,” IEEE Photon. Technol. Lett.21(17), 1214–1216 (2009).
[CrossRef]

2007 (2)

2005 (1)

2004 (1)

G. Bouwmans, B. Segard, P. Glorieux, P. A. Khandokhin, N. D. Milovsky, and E. Shirokov, “Polarization dynamics of longitudinally monomode bipolarized microchip solid-state lasers,” Radiophys and Quantum Electron.47, 729–742 (2004).
[CrossRef]

2002 (1)

C. N. Huang, H. Guo, Y. Li, and S. H. Zhang, “A novel tunable dual-frequency laser with large frequency difference,” Chin. J. Laser B11, 251–254 (2002).

2001 (1)

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett.13(4), 367–369 (2001).
[CrossRef]

1990 (1)

J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron.26(12), 2052–2057 (1990).
[CrossRef]

Alouini, M.

J. Le Gouët, L. Morvan, M. Alouini, J. Bourderionnet, D. Dolfi, and J. P. Huignard, “Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tunability,” Opt. Lett.32(9), 1090–1092 (2007).
[CrossRef] [PubMed]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett.13(4), 367–369 (2001).
[CrossRef]

Amon, A.

Benazet, B.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett.13(4), 367–369 (2001).
[CrossRef]

Bourderionnet, J.

Bouwmans, G.

G. Bouwmans, B. Segard, P. Glorieux, P. A. Khandokhin, N. D. Milovsky, and E. Shirokov, “Polarization dynamics of longitudinally monomode bipolarized microchip solid-state lasers,” Radiophys and Quantum Electron.47, 729–742 (2004).
[CrossRef]

Bretenaker, F.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett.13(4), 367–369 (2001).
[CrossRef]

Brunel, M.

M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 µm,” Opt. Lett.30(18), 2418–2420 (2005).
[CrossRef] [PubMed]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett.13(4), 367–369 (2001).
[CrossRef]

Coutts, D. W.

A. McKay, P. Dekker, D. W. Coutts, and J. M. Dawes, “Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser,” Opt. Commun.272(2), 425–430 (2007).
[CrossRef]

Dawes, J. M.

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett.21(7), 480–482 (2009).
[CrossRef]

A. McKay, P. Dekker, D. W. Coutts, and J. M. Dawes, “Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser,” Opt. Commun.272(2), 425–430 (2007).
[CrossRef]

Dekker, P.

A. McKay, P. Dekker, D. W. Coutts, and J. M. Dawes, “Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser,” Opt. Commun.272(2), 425–430 (2007).
[CrossRef]

Di Bin, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett.13(4), 367–369 (2001).
[CrossRef]

Dolfi, D.

Glorieux, P.

G. Bouwmans, B. Segard, P. Glorieux, P. A. Khandokhin, N. D. Milovsky, and E. Shirokov, “Polarization dynamics of longitudinally monomode bipolarized microchip solid-state lasers,” Radiophys and Quantum Electron.47, 729–742 (2004).
[CrossRef]

Guo, H.

C. N. Huang, H. Guo, Y. Li, and S. H. Zhang, “A novel tunable dual-frequency laser with large frequency difference,” Chin. J. Laser B11, 251–254 (2002).

Huang, C. N.

C. N. Huang, H. Guo, Y. Li, and S. H. Zhang, “A novel tunable dual-frequency laser with large frequency difference,” Chin. J. Laser B11, 251–254 (2002).

Huignard, J. P.

Ievlev, I. E.

I. E. Ievlev, I. V. Koryukin, Y. S. Lebedeva, and P. A. Khandokhin, “Continuous two-wave lasing in microchip Nd:YAG lasers,” Quantum Electron.41(8), 715–721 (2011).
[CrossRef]

Khandokhin, P. A.

I. E. Ievlev, I. V. Koryukin, Y. S. Lebedeva, and P. A. Khandokhin, “Continuous two-wave lasing in microchip Nd:YAG lasers,” Quantum Electron.41(8), 715–721 (2011).
[CrossRef]

G. Bouwmans, B. Segard, P. Glorieux, P. A. Khandokhin, N. D. Milovsky, and E. Shirokov, “Polarization dynamics of longitudinally monomode bipolarized microchip solid-state lasers,” Radiophys and Quantum Electron.47, 729–742 (2004).
[CrossRef]

Koryukin, I. V.

I. E. Ievlev, I. V. Koryukin, Y. S. Lebedeva, and P. A. Khandokhin, “Continuous two-wave lasing in microchip Nd:YAG lasers,” Quantum Electron.41(8), 715–721 (2011).
[CrossRef]

Le Floch, A.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett.13(4), 367–369 (2001).
[CrossRef]

Le Gouët, J.

Lebedeva, Y. S.

I. E. Ievlev, I. V. Koryukin, Y. S. Lebedeva, and P. A. Khandokhin, “Continuous two-wave lasing in microchip Nd:YAG lasers,” Quantum Electron.41(8), 715–721 (2011).
[CrossRef]

Li, Y.

R. Wang and Y. Li, “Dual-polarization spatial-hole-burning-free microchip laser,” IEEE Photon. Technol. Lett.21(17), 1214–1216 (2009).
[CrossRef]

C. N. Huang, H. Guo, Y. Li, and S. H. Zhang, “A novel tunable dual-frequency laser with large frequency difference,” Chin. J. Laser B11, 251–254 (2002).

McKay, A.

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett.21(7), 480–482 (2009).
[CrossRef]

A. McKay, P. Dekker, D. W. Coutts, and J. M. Dawes, “Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser,” Opt. Commun.272(2), 425–430 (2007).
[CrossRef]

Milovsky, N. D.

G. Bouwmans, B. Segard, P. Glorieux, P. A. Khandokhin, N. D. Milovsky, and E. Shirokov, “Polarization dynamics of longitudinally monomode bipolarized microchip solid-state lasers,” Radiophys and Quantum Electron.47, 729–742 (2004).
[CrossRef]

Morvan, L.

Segard, B.

G. Bouwmans, B. Segard, P. Glorieux, P. A. Khandokhin, N. D. Milovsky, and E. Shirokov, “Polarization dynamics of longitudinally monomode bipolarized microchip solid-state lasers,” Radiophys and Quantum Electron.47, 729–742 (2004).
[CrossRef]

Shirokov, E.

G. Bouwmans, B. Segard, P. Glorieux, P. A. Khandokhin, N. D. Milovsky, and E. Shirokov, “Polarization dynamics of longitudinally monomode bipolarized microchip solid-state lasers,” Radiophys and Quantum Electron.47, 729–742 (2004).
[CrossRef]

Thony, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett.13(4), 367–369 (2001).
[CrossRef]

Vallet, M.

M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 µm,” Opt. Lett.30(18), 2418–2420 (2005).
[CrossRef] [PubMed]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett.13(4), 367–369 (2001).
[CrossRef]

Wang, R.

R. Wang and Y. Li, “Dual-polarization spatial-hole-burning-free microchip laser,” IEEE Photon. Technol. Lett.21(17), 1214–1216 (2009).
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron.26(12), 2052–2057 (1990).
[CrossRef]

Zhang, S. H.

C. N. Huang, H. Guo, Y. Li, and S. H. Zhang, “A novel tunable dual-frequency laser with large frequency difference,” Chin. J. Laser B11, 251–254 (2002).

Chin. J. Laser B (1)

C. N. Huang, H. Guo, Y. Li, and S. H. Zhang, “A novel tunable dual-frequency laser with large frequency difference,” Chin. J. Laser B11, 251–254 (2002).

IEEE J. Quantum Electron. (1)

J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron.26(12), 2052–2057 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

R. Wang and Y. Li, “Dual-polarization spatial-hole-burning-free microchip laser,” IEEE Photon. Technol. Lett.21(17), 1214–1216 (2009).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett.13(4), 367–369 (2001).
[CrossRef]

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett.21(7), 480–482 (2009).
[CrossRef]

Opt. Commun. (1)

A. McKay, P. Dekker, D. W. Coutts, and J. M. Dawes, “Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser,” Opt. Commun.272(2), 425–430 (2007).
[CrossRef]

Opt. Lett. (2)

Quantum Electron. (1)

I. E. Ievlev, I. V. Koryukin, Y. S. Lebedeva, and P. A. Khandokhin, “Continuous two-wave lasing in microchip Nd:YAG lasers,” Quantum Electron.41(8), 715–721 (2011).
[CrossRef]

Radiophys and Quantum Electron. (1)

G. Bouwmans, B. Segard, P. Glorieux, P. A. Khandokhin, N. D. Milovsky, and E. Shirokov, “Polarization dynamics of longitudinally monomode bipolarized microchip solid-state lasers,” Radiophys and Quantum Electron.47, 729–742 (2004).
[CrossRef]

Other (2)

R. A. Witte, Spectrum and Network Measurements (SciTech Publishing, 2001), Chap. 8.

A. McKay, J. Dawes, P. Dekker, and D. Courts, “A comparison of tunable, passively-stabilized two-frequency solid-state lasers for microwave generation,” IEEE Int. Top. Mtg. on Microwave Photonics (Korea 2005), pp.161–164.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the composite-cavity microchip laser.

Fig. 2
Fig. 2

Experiment setup for electro-optically tunable microwave source.

Fig. 3
Fig. 3

Output power from the microchip laser as a function of the pump power.

Fig. 4
Fig. 4

Optical spectra of the laser with a 2 mm-long cavity at the pump power of (a) 140 mW, (b) 245 mW, and (c) 381 mW, respectively.

Fig. 5
Fig. 5

(a) Measured and calculated beat note frequency as a function of the voltage applied to the electro optic crystal; and (b) Stability of the beat frequency.

Fig. 6
Fig. 6

Frequency spectra and phase noise measurement of the beat note signals at (a) 6.16 GHz, (b) 10.45 GHz, and (c) 14.09 GHz, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δν=vδ/L
n x = n o + 1 2 n o 3 γ 22 E x n y = n o 1 2 n o 3 γ 22 E x
Δν= ν 0 Δn L oe L = ν 0 n o 3 γ 22 V d L oe L
Δν=Δ v 0 +aΔV+bΔT
N(Δf)= P m P c 10log(1.2 B nT )+C

Metrics