Abstract

We propose a simple square or hexagonal 16-QAM signal generation technique using a commercially available dual-drive IQ modulator driven by four binary electrical signals with properly designed amplitudes. We analytically derive the required driving signal amplitudes for square and hexagonal 16-QAM and characterize its implementation penalty. Polarization-multiplexed (PM)-16-QAM signals at 28 Gbuad are experimentally demonstrated and stable performance is achieved with simple bias control.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  2. M. Birk, P. Gerard, R. Curto, L. Nelson, X. Zhou, P. Magill, T. J. Schmidt, C. Malouin, B. Zhang, E. Ibragimov, S. Khatana, M. Glavanovic, R. Lofland, R. Marcoccia, G. Nicholl, M. Nowell, and F. Forghieri, “Field trial of a real-time, single wavelength, coherent 100 Gbit/s PM-QPSK channel upgrade of an installed 1800km link,” in Proceedings Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC) 2010, Paper PDPD1.
  3. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol.28(4), 547–556 (2010).
    [CrossRef]
  4. V. A. J. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-Gb/s POLMUX-16QAM Transmission Over 656 km of Large-Aeff PSCF With a Spectral Efficiency of 5.6 b/s/Hz,” IEEE Photonic Tech. L.23(20), 1427–1429 (2011).
    [CrossRef]
  5. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10×224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid over 1,200 km of fiber,” in Optical Fiber Communication (OFC), Collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC) (2010), Paper PDPB8.
  6. K. Schuh, F. Buchali, D. Roesener, E. Lach, O. Bertran Pardo, J. Renaudier, G. Charlet, H. Mardoyan, and P. Tran, “15.4 Tb/s transmission over 2400 km using polarization multiplexed 32-Gbaud 16-QAM modulation and coherent detection comprising digital signal processing,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.B.4.
  7. X. Zhou and J. Yu, “200-Gb/s PDM-16-QAM generation using a new synthesizing method,” in 35th European Conference on Optical Communication,2009. ECOC ’09 (IEEE, 2009), Paper 10.3.5.
  8. G.-W. Lu, M. Sköld, P. Johannisson, J. Zhao, M. Sjödin, H. Sunnerud, M. Westlund, A. Ellis, and P. A. Andrekson, “40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals,” Opt. Express18(22), 23062–23069 (2010).
    [CrossRef] [PubMed]
  9. A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “16-level quadrature amplitude modulation by monolithic quad-parallel mach-zehnder optical modulator,” Electron. Lett.46(3), 220–228 (2010).
    [CrossRef]
  10. G. W. Lu, T. Sakamoto, A. Chiba, T. Kawanishi, T. Miyazaki, K. Higuma, M. Sudo, and J. Ichikawa, “16-QAM Transmitter using Monolithically Integrated Quad Mach-Zehnder IQ Modulator,” in Proc. European Conference and Exhibition on Optical Communication (ECOC) (2010), Paper Mo.1.F.3.
  11. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Spectrally Efficient Long-Haul WDM Transmission Using 224-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol.29(4), 373–377 (2011).
    [CrossRef]
  12. C. R. Doerr, L. Zhang, P. Winzer, and A. H. Gnauck, “28-Gbaud InP Square or Hexagonal 16-QAM Modulator,” in Optical Fiber Communication Conference (2011), Paper OMU2.
  13. S. Yan, D. Wang, Y. Gao, C. Lu, A. P. T. Lau, L. Liu, and X. Xu, “Generation of square or hexagonal 16-QAM signals using a single dual drive IQ modulator driven by binary signals,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), Paper OW3H.3.
  14. J. Forney, R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient modulation for band-limited channels,” IEEE J. Sel. Areas Comm.2(5), 632–647 (1984).
    [CrossRef]
  15. S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top Quant.16(5), 1164–1179 (2010).
    [CrossRef]
  16. Y. Gao, A. P. T. Lau, S. Yan, and C. Lu, “Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems,” Opt. Express19(22), 21717–21729 (2011).
    [CrossRef] [PubMed]
  17. M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photonic Tech. L.22(15), 1150–1152 (2010).
    [CrossRef]

2011 (3)

V. A. J. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-Gb/s POLMUX-16QAM Transmission Over 656 km of Large-Aeff PSCF With a Spectral Efficiency of 5.6 b/s/Hz,” IEEE Photonic Tech. L.23(20), 1427–1429 (2011).
[CrossRef]

A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Spectrally Efficient Long-Haul WDM Transmission Using 224-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol.29(4), 373–377 (2011).
[CrossRef]

Y. Gao, A. P. T. Lau, S. Yan, and C. Lu, “Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems,” Opt. Express19(22), 21717–21729 (2011).
[CrossRef] [PubMed]

2010 (5)

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol.28(4), 547–556 (2010).
[CrossRef]

G.-W. Lu, M. Sköld, P. Johannisson, J. Zhao, M. Sjödin, H. Sunnerud, M. Westlund, A. Ellis, and P. A. Andrekson, “40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals,” Opt. Express18(22), 23062–23069 (2010).
[CrossRef] [PubMed]

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “16-level quadrature amplitude modulation by monolithic quad-parallel mach-zehnder optical modulator,” Electron. Lett.46(3), 220–228 (2010).
[CrossRef]

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top Quant.16(5), 1164–1179 (2010).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photonic Tech. L.22(15), 1150–1152 (2010).
[CrossRef]

2008 (1)

1984 (1)

J. Forney, R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient modulation for band-limited channels,” IEEE J. Sel. Areas Comm.2(5), 632–647 (1984).
[CrossRef]

Alfiad, M. S.

V. A. J. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-Gb/s POLMUX-16QAM Transmission Over 656 km of Large-Aeff PSCF With a Spectral Efficiency of 5.6 b/s/Hz,” IEEE Photonic Tech. L.23(20), 1427–1429 (2011).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photonic Tech. L.22(15), 1150–1152 (2010).
[CrossRef]

Andrekson, P. A.

Barros, D. J. F.

Buhl, L. L.

Chandrasekhar, S.

Chiba, A.

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “16-level quadrature amplitude modulation by monolithic quad-parallel mach-zehnder optical modulator,” Electron. Lett.46(3), 220–228 (2010).
[CrossRef]

de Waardt, H.

V. A. J. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-Gb/s POLMUX-16QAM Transmission Over 656 km of Large-Aeff PSCF With a Spectral Efficiency of 5.6 b/s/Hz,” IEEE Photonic Tech. L.23(20), 1427–1429 (2011).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photonic Tech. L.22(15), 1150–1152 (2010).
[CrossRef]

Doerr, C. R.

Ellis, A.

Forney, J.

J. Forney, R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient modulation for band-limited channels,” IEEE J. Sel. Areas Comm.2(5), 632–647 (1984).
[CrossRef]

Gallager, R.

J. Forney, R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient modulation for band-limited channels,” IEEE J. Sel. Areas Comm.2(5), 632–647 (1984).
[CrossRef]

Gao, Y.

Gnauck, A. H.

Higuma, K.

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “16-level quadrature amplitude modulation by monolithic quad-parallel mach-zehnder optical modulator,” Electron. Lett.46(3), 220–228 (2010).
[CrossRef]

Hirano, M.

V. A. J. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-Gb/s POLMUX-16QAM Transmission Over 656 km of Large-Aeff PSCF With a Spectral Efficiency of 5.6 b/s/Hz,” IEEE Photonic Tech. L.23(20), 1427–1429 (2011).
[CrossRef]

Ichikawa, J.

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “16-level quadrature amplitude modulation by monolithic quad-parallel mach-zehnder optical modulator,” Electron. Lett.46(3), 220–228 (2010).
[CrossRef]

Ip, E.

Jansen, S. L.

V. A. J. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-Gb/s POLMUX-16QAM Transmission Over 656 km of Large-Aeff PSCF With a Spectral Efficiency of 5.6 b/s/Hz,” IEEE Photonic Tech. L.23(20), 1427–1429 (2011).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photonic Tech. L.22(15), 1150–1152 (2010).
[CrossRef]

Johannisson, P.

Kahn, J. M.

Kawanishi, T.

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “16-level quadrature amplitude modulation by monolithic quad-parallel mach-zehnder optical modulator,” Electron. Lett.46(3), 220–228 (2010).
[CrossRef]

Kuschnerov, M.

V. A. J. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-Gb/s POLMUX-16QAM Transmission Over 656 km of Large-Aeff PSCF With a Spectral Efficiency of 5.6 b/s/Hz,” IEEE Photonic Tech. L.23(20), 1427–1429 (2011).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photonic Tech. L.22(15), 1150–1152 (2010).
[CrossRef]

Lang, G.

J. Forney, R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient modulation for band-limited channels,” IEEE J. Sel. Areas Comm.2(5), 632–647 (1984).
[CrossRef]

Lau, A. P. T.

Liu, X.

Longstaff, F.

J. Forney, R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient modulation for band-limited channels,” IEEE J. Sel. Areas Comm.2(5), 632–647 (1984).
[CrossRef]

Lu, C.

Lu, G.-W.

Magarini, M.

Peckham, D. W.

Qureshi, S.

J. Forney, R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient modulation for band-limited channels,” IEEE J. Sel. Areas Comm.2(5), 632–647 (1984).
[CrossRef]

Sakamoto, T.

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “16-level quadrature amplitude modulation by monolithic quad-parallel mach-zehnder optical modulator,” Electron. Lett.46(3), 220–228 (2010).
[CrossRef]

Sasaki, T.

V. A. J. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-Gb/s POLMUX-16QAM Transmission Over 656 km of Large-Aeff PSCF With a Spectral Efficiency of 5.6 b/s/Hz,” IEEE Photonic Tech. L.23(20), 1427–1429 (2011).
[CrossRef]

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top Quant.16(5), 1164–1179 (2010).
[CrossRef]

Sjödin, M.

Sköld, M.

Sleiffer, V. A. J.

V. A. J. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-Gb/s POLMUX-16QAM Transmission Over 656 km of Large-Aeff PSCF With a Spectral Efficiency of 5.6 b/s/Hz,” IEEE Photonic Tech. L.23(20), 1427–1429 (2011).
[CrossRef]

Sudo, M.

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “16-level quadrature amplitude modulation by monolithic quad-parallel mach-zehnder optical modulator,” Electron. Lett.46(3), 220–228 (2010).
[CrossRef]

Sunnerud, H.

van den Borne, D.

V. A. J. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-Gb/s POLMUX-16QAM Transmission Over 656 km of Large-Aeff PSCF With a Spectral Efficiency of 5.6 b/s/Hz,” IEEE Photonic Tech. L.23(20), 1427–1429 (2011).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photonic Tech. L.22(15), 1150–1152 (2010).
[CrossRef]

Veljanovski, V.

V. A. J. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-Gb/s POLMUX-16QAM Transmission Over 656 km of Large-Aeff PSCF With a Spectral Efficiency of 5.6 b/s/Hz,” IEEE Photonic Tech. L.23(20), 1427–1429 (2011).
[CrossRef]

Westlund, M.

Winzer, P. J.

Wuth, T.

V. A. J. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-Gb/s POLMUX-16QAM Transmission Over 656 km of Large-Aeff PSCF With a Spectral Efficiency of 5.6 b/s/Hz,” IEEE Photonic Tech. L.23(20), 1427–1429 (2011).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photonic Tech. L.22(15), 1150–1152 (2010).
[CrossRef]

Yamamoto, Y.

V. A. J. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-Gb/s POLMUX-16QAM Transmission Over 656 km of Large-Aeff PSCF With a Spectral Efficiency of 5.6 b/s/Hz,” IEEE Photonic Tech. L.23(20), 1427–1429 (2011).
[CrossRef]

Yan, S.

Zhao, J.

Zhu, B.

Electron. Lett. (1)

A. Chiba, T. Sakamoto, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “16-level quadrature amplitude modulation by monolithic quad-parallel mach-zehnder optical modulator,” Electron. Lett.46(3), 220–228 (2010).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

J. Forney, R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient modulation for band-limited channels,” IEEE J. Sel. Areas Comm.2(5), 632–647 (1984).
[CrossRef]

IEEE J. Sel. Top Quant. (1)

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top Quant.16(5), 1164–1179 (2010).
[CrossRef]

IEEE Photonic Tech. L. (2)

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photonic Tech. L.22(15), 1150–1152 (2010).
[CrossRef]

V. A. J. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-Gb/s POLMUX-16QAM Transmission Over 656 km of Large-Aeff PSCF With a Spectral Efficiency of 5.6 b/s/Hz,” IEEE Photonic Tech. L.23(20), 1427–1429 (2011).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (3)

Other (7)

A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10×224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid over 1,200 km of fiber,” in Optical Fiber Communication (OFC), Collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC) (2010), Paper PDPB8.

K. Schuh, F. Buchali, D. Roesener, E. Lach, O. Bertran Pardo, J. Renaudier, G. Charlet, H. Mardoyan, and P. Tran, “15.4 Tb/s transmission over 2400 km using polarization multiplexed 32-Gbaud 16-QAM modulation and coherent detection comprising digital signal processing,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.B.4.

X. Zhou and J. Yu, “200-Gb/s PDM-16-QAM generation using a new synthesizing method,” in 35th European Conference on Optical Communication,2009. ECOC ’09 (IEEE, 2009), Paper 10.3.5.

M. Birk, P. Gerard, R. Curto, L. Nelson, X. Zhou, P. Magill, T. J. Schmidt, C. Malouin, B. Zhang, E. Ibragimov, S. Khatana, M. Glavanovic, R. Lofland, R. Marcoccia, G. Nicholl, M. Nowell, and F. Forghieri, “Field trial of a real-time, single wavelength, coherent 100 Gbit/s PM-QPSK channel upgrade of an installed 1800km link,” in Proceedings Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC) 2010, Paper PDPD1.

G. W. Lu, T. Sakamoto, A. Chiba, T. Kawanishi, T. Miyazaki, K. Higuma, M. Sudo, and J. Ichikawa, “16-QAM Transmitter using Monolithically Integrated Quad Mach-Zehnder IQ Modulator,” in Proc. European Conference and Exhibition on Optical Communication (ECOC) (2010), Paper Mo.1.F.3.

C. R. Doerr, L. Zhang, P. Winzer, and A. H. Gnauck, “28-Gbaud InP Square or Hexagonal 16-QAM Modulator,” in Optical Fiber Communication Conference (2011), Paper OMU2.

S. Yan, D. Wang, Y. Gao, C. Lu, A. P. T. Lau, L. Liu, and X. Xu, “Generation of square or hexagonal 16-QAM signals using a single dual drive IQ modulator driven by binary signals,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), Paper OW3H.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Operating principle of the proposed 16-QAM transmitter using dual-drive IQ modulator driven by binary signals.

Fig. 2
Fig. 2

Constellation points generated by a dual-drive MZM with different driving amplitudes. By appropriately designing the driving amplitudes V H and V L , one can generated 4 signal points A,B,C and D that falls on the same line and equi-distant from each other i.e. essentially a 4-APSK signal.

Fig. 3
Fig. 3

Power of the residual carrier P c and power penalty introduced by the residual carrier for various driving signal amplitudes V H .

Fig. 4
Fig. 4

Simulated back-to-back transmissions results for PM-16QAM signals with variable driving signal amplitudes. Inset: Corresponding optical spectra (vertically displaced for visual clarity).

Fig. 5
Fig. 5

Operating principle of the proposed Hexagonal 16-QAM transmitter using dual-drive IQ modulator driven by binary signals.

Fig. 6
Fig. 6

Constellation points generated by a dual-drive MZM biasing at v b =π/6 . By appropriately designing the driving amplitudes V H and V L , one can generated 4 signal points A,B,C and D that form a parallelogram.

Fig. 7
Fig. 7

Experimental setup for the proposed 16-QAM signal generation technique. De-correlated 28Gb/s binary data streams with different amplitudes are used to drive the dual-drive IQ modulator. PD: photo-detector; PBS: polarization beam splitter; PBC: polarization beam combiner; polarization division multiplexing; VOA: variable optical attenuator; ECL: external cavity laser.

Fig. 8
Fig. 8

Eye diagram (a) and optical spectra (b) with/without interlever of 28 Gbaud 16-QAM signals

Fig. 9
Fig. 9

Received signal distributions for the 28 Gbaud 16-QAM signal.

Fig. 10
Fig. 10

Back-to-back BER vs. OSNR using the proposed square 16-QAM generation technique driven by two binary signals with different amplitudes. The OSNR is measured in 0.1 nm bandwidth.

Fig. 11
Fig. 11

(a) Received signal distribution using the proposed hexagonal 16-QAM generation technique; (b) corresponding optical spectrum.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E out (t) E in (t) = 1 2 ( e j( v 1 V π π+ v b 2 ) + e j( v 2 V π π+ v b 2 ) ),
ϕ H = V H 2 V π π and ϕ L = V L 2 V π π.
E out (t) E in (t) = 1 2 ( e j( ± V H π 2 V π + π 2 ) + e j( ± V L π 2 V π + π 2 ) )= j 2 ( e j ± V H π 2 V π e j ± V L π 2 V π ) =sin ± V H ± V L 4 V π /π cos ± V H V L 4 V π /π jsin V H + V L 4 V π /π sin V H V L 4 V π /π =sin ± ϕ H ± ϕ L 2 cos ± ϕ H ϕ L 2 jsin ϕ H + ϕ L 2 sin ϕ H ϕ L 2 .
I offset =| cos ϕ L cos ϕ H |=sin V H + V L 4 V π /π sin V H V L 4 V π /π .
V π
2sin( V L 2 V π π )=sin( V H 2 V π π ).
P c = I Offset 2 + Q Offset 2 =2 sin 2 ( V H + V L 4 V π /π ) sin 2 ( V H V L 4 V π /π ).
sin( V H 2 V π π )= 3 sin( V L 2 V π π ).

Metrics