Abstract

We apply a complete uncertainty analysis, not studied in the literature, to investigate the dependences of retrieved electromagnetic properties of two MM slabs (the first one with only split-ring resonators (SRRs) and the second with SRRs and a continuous wire) with single-band and dual-band resonating properties on the measured/simulated scattering parameters, the slab length, and the operating frequency. Such an analysis is necessary for the selection of a suitable retrieval method together with the correct examination of exotic properties of MM slabs especially in their resonance regions. For this analysis, a differential uncertainty model is developed to monitor minute changes in the dependent variables (electromagnetic properties of MM slabs) in functions of independent variables (scattering (S-) parameters, the slab length, and the operating frequency). Two complementary approaches (the analytical approach and the dispersion model approach) each with different strengths are utilized to retrieve the electromagnetic properties of various MM slabs, which are needed for the application of the uncertainty analysis. We note the following important results from our investigation. First, uncertainties in the retrieved electromagnetic properties of the analyzed MM slabs drastically increase when values of electromagnetic properties shrink to zero or near resonance regions where S-parameters exhibit rapid changes. Second, any low-loss or medium-loss inside the MM slabs due to an imperfect dielectric substrate or a finite conductivity of metals can decrease these uncertainties near resonance regions because these losses hinder abrupt changes in S-parameters. Finally, we note that precise information of especially the slab length and the operating frequency is a prerequisite for accurate analysis of exotic electromagnetic properties of MM slabs (especially multiband MM slabs) near resonance regions.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values ofε and μ, ” Sov. Phys. Uspekhi10, 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  4. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
    [CrossRef] [PubMed]
  5. W. H. Wee and J. B. Pendry, “Universal evolution of perfect lenses,” Phys. Rev. Lett.106(16), 165503 (2011).
    [CrossRef] [PubMed]
  6. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
    [CrossRef] [PubMed]
  7. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  8. R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett.95(1), 011106 (2009).
    [CrossRef]
  9. L. Jelinek, R. Marques, and M. J. Freire, “Accurate modeling of split ring metamaterial lenses for magnetic resonance imaging applications,” J. Appl. Phys.105(2), 024907 (2009).
    [CrossRef]
  10. C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).
    [CrossRef]
  11. D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).
    [CrossRef]
  12. R. E. Collin, Field Theory of Guided Waves (Wiley-IEEE Press, 1990).
  13. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10(22), 4785–4809 (1998).
    [CrossRef]
  14. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
    [CrossRef]
  15. K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys.9(9), 326 (2007).
    [CrossRef]
  16. C. Sabah, “Multiband planar metamaterials,” Microw. Opt. Technol. Lett.53(10), 2255–2258 (2011).
    [CrossRef]
  17. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
    [CrossRef]
  18. H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).
  19. C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77(19), 195328 (2008).
    [CrossRef]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  21. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
    [CrossRef]
  22. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B62(16), 10696–10705 (2000).
    [CrossRef]
  23. T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).
    [CrossRef]
  24. Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(2), 026610 (2009).
    [CrossRef] [PubMed]
  25. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
    [CrossRef] [PubMed]
  26. P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express11(7), 649–661 (2003).
    [CrossRef] [PubMed]
  27. M. Bozzi, L. Perregrini, J. Weinzierl, and C. Winnewisser, “Efficient analysis of quasi-optical filters by a hybrid MoM/Bi-RME method,” IEEE Trans. Antenn. Propag.49(7), 1054–1064 (2001).
    [CrossRef]
  28. Z. H. Jiang, J. A. Bossard, X. Wang, and D. H. Werner, “Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm,” J. Appl. Phys.109(1), 013515 (2011).
    [CrossRef]
  29. T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B75(11), 115114 (2007).
    [CrossRef]
  30. D. R. Smith, D. Schurig, and J. J. Mock, “Characterization of a planar artificial magnetic metamaterial surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(3), 036604 (2006).
    [CrossRef] [PubMed]
  31. K. B. Alici and E. Ozbay, “Oblique response of a split-ring-resonator-based left-handed metamaterial slab,” Opt. Lett.34(15), 2294–2296 (2009).
    [CrossRef] [PubMed]
  32. X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 046610 (2005).
    [CrossRef] [PubMed]
  33. U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res.112, 109–124 (2011).
  34. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B65(14), 144440 (2002).
    [CrossRef]
  35. A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).
    [CrossRef]
  36. A. M. Nicolson and G. Ross, “Measurement of the intrinsic properties of materials by time–domain techniques,” IEEE Trans. Instrum. Meas.19(4), 377–382 (1970).
    [CrossRef]
  37. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
    [CrossRef] [PubMed]
  38. U. C. Hasar, “A microwave method for accurate and stable retrieval of constitutive parameters of low- and medium-loss materials,” IEEE Microw. Wirel. Compon. Lett.20(12), 696–698 (2010).
    [CrossRef]
  39. U. C. Hasar, “Procedure for accurate and stable constitutive parameters extraction of materials at microwave frequencies,” Prog. Electromagn. Res.109, 107–121 (2010).
    [CrossRef]
  40. J. Qi, H. Kettunen, H. Wallen, and A. Sihvola, “Compensation of Fabry-Perot resonances in homogenization of dielectric composites,” IEEE Antennas Wireless Propag. Lett.9, 1057–1060 (2010).
    [CrossRef]
  41. X.-X. Liu, D. A. Powell, and A. Alu, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B84(23), 235106 (2011).
    [CrossRef]
  42. W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE62(1), 33–36 (1974).
    [CrossRef]
  43. A. H. Muqaibel and A. Safaai-Jazi, “A new formulation for characterization of materials based on measured insertion transfer function,” IEEE Trans. Microw. Theory Tech.51(8), 1946–1951 (2003).
    [CrossRef]
  44. S. Xia, Z. Xu, and X. Wei, “Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency,” Rev. Sci. Instrum.80(11), 114703 (2009).
    [CrossRef] [PubMed]
  45. O. Büyüköztürk, T.-Y. Yu, and J. A. Ortega, “A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements,” Cement Concr. Compos.28(4), 349–359 (2006).
    [CrossRef]
  46. U. C. Hasar, “Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies,” Prog. Electromagn. Res.107, 31–46 (2010).
    [CrossRef]
  47. Z. Szabo, G.-H. Park, R. Hedge, and E.-P. Li, “Unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microw. Theory Tech.58(10), 2646–2653 (2010).
    [CrossRef]
  48. V. V. Varadan and R. Ro, “Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality,” IEEE Trans. Microw. Theory Tech.55(10), 2224–2230 (2007).
    [CrossRef]
  49. J. J. Barroso and U. C. Hasar, “Resolving phase ambiguity in the inverse problem of transmission/reflection measurement methods,” Int. J. Infrared Millim. Waves32(6), 857–866 (2011).
    [CrossRef]
  50. U. C. Hasar, J. J. Barroso, C. Sabah, and Y. Kaya, “Resolving phase ambiguity in the inverse problem of reflection-only measurement methods,” Prog. Electromagn. Res.129, 405–420 (2012).
  51. O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A tespwise Nicolson-Ross-Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).
    [CrossRef]
  52. B. Kapilevih and B. Litvak, “THz characterization of high-dielectric constant materials using double-layer sample,” Microw. Opt. Technol. Lett.49(6), 1388–1391 (2007).
    [CrossRef]
  53. U. C. Hasar and I. Y. Ozbek, “Complex permittivity determination of lossy materials at millimeter and terahertz frequencies using free-space amplitude measurements,” J. Electromagn. Waves Appl.25(14-15), 2100–2109 (2011).
    [CrossRef]
  54. U. C. Hasar and A. Abusoglu, “Using millimeter and terahertz frequencies for complex permittivity retrieval of low-loss materials,” J. Electromagn. Waves Appl.25(17-18), 2389–2398 (2011).
    [CrossRef]
  55. B. Kapilevich, Y. Pinhasi, and B. Litvak, “Measurement of complex permittivity of lossy materials in free space using matched THz power meter,” Int. J. Infrared Millim. Waves32(12), 1446–1456 (2011).
    [CrossRef]
  56. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
    [CrossRef] [PubMed]
  57. E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).
    [CrossRef]
  58. C. Sabah, “Multiband metamaterials based on multiple concentric open ring resonators topology,” IEEE J. Sel. Topics Quantum Electron. 2012 (DOI#: 10.1109/JSTQE.2012.2193875).
    [CrossRef]
  59. C. Sabah, “Multi-resonant metamaterial design based on concentric V -shaped magnetic resonators,” J. Electromagn. Waves Appl.26(8-9), 1105–1115 (2012).
    [CrossRef]
  60. D. M. Pozar, Microwave Engineering (Wiley, Hoboken, NJ, 2005).
  61. T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).
    [CrossRef]
  62. G. Lubkowski, B. Bandlow, R. Schuhmann, and T. Weiland, “Effective modeling of double negative metamaterial macrostructures,” IEEE Trans. Microw. Theory Tech.57(5), 1136–1146 (2009).
    [CrossRef]
  63. R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056625 (2001).
    [CrossRef] [PubMed]
  64. T. J. Cui and J. A. Kong, “Time-domain electromagnetic energy in a frequency-dispersive left-handed medium,” Phys. Rev. B70(20), 205106 (2004).
    [CrossRef]
  65. C. Sabah and S. Uckun, “Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Prog. Electromagn. Res.91, 349–364 (2009).
    [CrossRef]
  66. J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constrains applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas.41(5), 646–652 (1992).
    [CrossRef]
  67. S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin materials using resonating metamaterials,” Prog. Electromagn. Res.120, 327–337 (2011).
  68. C. Alexander and M. Sadiku, Fundamentals of Electric Circuits (McGraw-Hill, 2002).
  69. U. C. Hasar, I. Y. Ozbek, E. A. Oral, T. Karacali, and H. Efeoglu, “The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry-Perot cavities in sensing applications,” Opt. Express20(20), 22208–22223 (2012).
    [CrossRef] [PubMed]
  70. G. Lubkowski, R. Schuhmann, and T. Weiland, “Extraction of effective metamaterial parameters by parameter fitting of dispersive models,” Microw. Opt. Technol. Lett.49(2), 285–288 (2007).
    [CrossRef]
  71. R. Storn and K. Price, “Differential evaluation–A simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim.11(4), 341–359 (1997).
    [CrossRef]
  72. K. Price, R. Storn, and J. Lampinen, Differential Evolution - A Practical Approach to Global Optimization (Springer, 2005).
  73. K. Price and R. Storn, “Differential evaluation (DE) for continuous function optimization,” http://www.icsi.berkeley.edu/~storn/code.html .
  74. The MathWorks, http://www.mathworks.com .
  75. J. Baker–Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory Tech.38(8), 1096–1103 (1990).
    [CrossRef]
  76. A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microw. Theory Tech.45(1), 52–57 (1997).
    [CrossRef]
  77. U. C. Hasar and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microw. Theory Tech.57(2), 471–477 (2009).
    [CrossRef]
  78. J. J. Barroso and A. L. de Paula, “Retrieval of permittivity and permeability of homogeneous materials from scattering parameters,” J. Electromagn. Waves Appl.24(11-12), 1563–1574 (2010).
    [CrossRef]
  79. K. Chalapat, K. Sarvala, J. Li, and G. S. Paraoanu, “Wideband reference-plane invariant method for measuring electromagnetic parameters of materials,” IEEE Trans. Microw. Theory Tech.57(9), 2257–2267 (2009).
    [CrossRef]
  80. S. J. Kline and F. A. McClintock, “Describing uncertainties in single−sample experiments,” Mech. Eng.75, 3 (1953).
  81. J. Baker–Jarvis, M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, “Transmission/reflection and short–circuit line methods for measuring permittivity and permeability,” NIST, Boulder, CO, Tech. Note 1355, (1992).
  82. G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists: A Comprehensive Guide (Academic Press, 2005).
  83. E. Kreyszig, Advanced Engineering Mathematics (Wiley, 2006).
  84. H. J. Pain, The Physics of Vibrations and Waves (Wiley, 2008).

2012 (3)

U. C. Hasar, J. J. Barroso, C. Sabah, and Y. Kaya, “Resolving phase ambiguity in the inverse problem of reflection-only measurement methods,” Prog. Electromagn. Res.129, 405–420 (2012).

C. Sabah, “Multi-resonant metamaterial design based on concentric V -shaped magnetic resonators,” J. Electromagn. Waves Appl.26(8-9), 1105–1115 (2012).
[CrossRef]

U. C. Hasar, I. Y. Ozbek, E. A. Oral, T. Karacali, and H. Efeoglu, “The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry-Perot cavities in sensing applications,” Opt. Express20(20), 22208–22223 (2012).
[CrossRef] [PubMed]

2011 (14)

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A tespwise Nicolson-Ross-Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).
[CrossRef]

J. J. Barroso and U. C. Hasar, “Resolving phase ambiguity in the inverse problem of transmission/reflection measurement methods,” Int. J. Infrared Millim. Waves32(6), 857–866 (2011).
[CrossRef]

U. C. Hasar and I. Y. Ozbek, “Complex permittivity determination of lossy materials at millimeter and terahertz frequencies using free-space amplitude measurements,” J. Electromagn. Waves Appl.25(14-15), 2100–2109 (2011).
[CrossRef]

U. C. Hasar and A. Abusoglu, “Using millimeter and terahertz frequencies for complex permittivity retrieval of low-loss materials,” J. Electromagn. Waves Appl.25(17-18), 2389–2398 (2011).
[CrossRef]

B. Kapilevich, Y. Pinhasi, and B. Litvak, “Measurement of complex permittivity of lossy materials in free space using matched THz power meter,” Int. J. Infrared Millim. Waves32(12), 1446–1456 (2011).
[CrossRef]

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin materials using resonating metamaterials,” Prog. Electromagn. Res.120, 327–337 (2011).

Z. H. Jiang, J. A. Bossard, X. Wang, and D. H. Werner, “Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm,” J. Appl. Phys.109(1), 013515 (2011).
[CrossRef]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

W. H. Wee and J. B. Pendry, “Universal evolution of perfect lenses,” Phys. Rev. Lett.106(16), 165503 (2011).
[CrossRef] [PubMed]

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).
[CrossRef]

C. Sabah, “Multiband planar metamaterials,” Microw. Opt. Technol. Lett.53(10), 2255–2258 (2011).
[CrossRef]

U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res.112, 109–124 (2011).

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).
[CrossRef]

X.-X. Liu, D. A. Powell, and A. Alu, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B84(23), 235106 (2011).
[CrossRef]

2010 (8)

U. C. Hasar, “A microwave method for accurate and stable retrieval of constitutive parameters of low- and medium-loss materials,” IEEE Microw. Wirel. Compon. Lett.20(12), 696–698 (2010).
[CrossRef]

U. C. Hasar, “Procedure for accurate and stable constitutive parameters extraction of materials at microwave frequencies,” Prog. Electromagn. Res.109, 107–121 (2010).
[CrossRef]

J. Qi, H. Kettunen, H. Wallen, and A. Sihvola, “Compensation of Fabry-Perot resonances in homogenization of dielectric composites,” IEEE Antennas Wireless Propag. Lett.9, 1057–1060 (2010).
[CrossRef]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).
[CrossRef]

J. J. Barroso and A. L. de Paula, “Retrieval of permittivity and permeability of homogeneous materials from scattering parameters,” J. Electromagn. Waves Appl.24(11-12), 1563–1574 (2010).
[CrossRef]

U. C. Hasar, “Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies,” Prog. Electromagn. Res.107, 31–46 (2010).
[CrossRef]

Z. Szabo, G.-H. Park, R. Hedge, and E.-P. Li, “Unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microw. Theory Tech.58(10), 2646–2653 (2010).
[CrossRef]

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).
[CrossRef]

2009 (11)

S. Xia, Z. Xu, and X. Wei, “Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency,” Rev. Sci. Instrum.80(11), 114703 (2009).
[CrossRef] [PubMed]

G. Lubkowski, B. Bandlow, R. Schuhmann, and T. Weiland, “Effective modeling of double negative metamaterial macrostructures,” IEEE Trans. Microw. Theory Tech.57(5), 1136–1146 (2009).
[CrossRef]

K. Chalapat, K. Sarvala, J. Li, and G. S. Paraoanu, “Wideband reference-plane invariant method for measuring electromagnetic parameters of materials,” IEEE Trans. Microw. Theory Tech.57(9), 2257–2267 (2009).
[CrossRef]

K. B. Alici and E. Ozbay, “Oblique response of a split-ring-resonator-based left-handed metamaterial slab,” Opt. Lett.34(15), 2294–2296 (2009).
[CrossRef] [PubMed]

C. Sabah and S. Uckun, “Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Prog. Electromagn. Res.91, 349–364 (2009).
[CrossRef]

U. C. Hasar and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microw. Theory Tech.57(2), 471–477 (2009).
[CrossRef]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett.95(1), 011106 (2009).
[CrossRef]

L. Jelinek, R. Marques, and M. J. Freire, “Accurate modeling of split ring metamaterial lenses for magnetic resonance imaging applications,” J. Appl. Phys.105(2), 024907 (2009).
[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).
[CrossRef]

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(2), 026610 (2009).
[CrossRef] [PubMed]

2008 (1)

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77(19), 195328 (2008).
[CrossRef]

2007 (6)

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys.9(9), 326 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

G. Lubkowski, R. Schuhmann, and T. Weiland, “Extraction of effective metamaterial parameters by parameter fitting of dispersive models,” Microw. Opt. Technol. Lett.49(2), 285–288 (2007).
[CrossRef]

T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B75(11), 115114 (2007).
[CrossRef]

B. Kapilevih and B. Litvak, “THz characterization of high-dielectric constant materials using double-layer sample,” Microw. Opt. Technol. Lett.49(6), 1388–1391 (2007).
[CrossRef]

V. V. Varadan and R. Ro, “Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality,” IEEE Trans. Microw. Theory Tech.55(10), 2224–2230 (2007).
[CrossRef]

2006 (3)

O. Büyüköztürk, T.-Y. Yu, and J. A. Ortega, “A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements,” Cement Concr. Compos.28(4), 349–359 (2006).
[CrossRef]

D. R. Smith, D. Schurig, and J. J. Mock, “Characterization of a planar artificial magnetic metamaterial surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(3), 036604 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

2005 (3)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 046610 (2005).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

2004 (2)

T. J. Cui and J. A. Kong, “Time-domain electromagnetic energy in a frequency-dispersive left-handed medium,” Phys. Rev. B70(20), 205106 (2004).
[CrossRef]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
[CrossRef] [PubMed]

2003 (2)

A. H. Muqaibel and A. Safaai-Jazi, “A new formulation for characterization of materials based on measured insertion transfer function,” IEEE Trans. Microw. Theory Tech.51(8), 1946–1951 (2003).
[CrossRef]

P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express11(7), 649–661 (2003).
[CrossRef] [PubMed]

2002 (2)

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B65(14), 144440 (2002).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

2001 (4)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

M. Bozzi, L. Perregrini, J. Weinzierl, and C. Winnewisser, “Efficient analysis of quasi-optical filters by a hybrid MoM/Bi-RME method,” IEEE Trans. Antenn. Propag.49(7), 1054–1064 (2001).
[CrossRef]

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056625 (2001).
[CrossRef] [PubMed]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).
[CrossRef]

2000 (3)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B62(16), 10696–10705 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10(22), 4785–4809 (1998).
[CrossRef]

1997 (2)

R. Storn and K. Price, “Differential evaluation–A simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim.11(4), 341–359 (1997).
[CrossRef]

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microw. Theory Tech.45(1), 52–57 (1997).
[CrossRef]

1992 (1)

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constrains applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas.41(5), 646–652 (1992).
[CrossRef]

1990 (1)

J. Baker–Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory Tech.38(8), 1096–1103 (1990).
[CrossRef]

1974 (1)

W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE62(1), 33–36 (1974).
[CrossRef]

1970 (1)

A. M. Nicolson and G. Ross, “Measurement of the intrinsic properties of materials by time–domain techniques,” IEEE Trans. Instrum. Meas.19(4), 377–382 (1970).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values ofε and μ, ” Sov. Phys. Uspekhi10, 509–514 (1968).
[CrossRef]

1953 (1)

S. J. Kline and F. A. McClintock, “Describing uncertainties in single−sample experiments,” Mech. Eng.75, 3 (1953).

Abusoglu, A.

U. C. Hasar and A. Abusoglu, “Using millimeter and terahertz frequencies for complex permittivity retrieval of low-loss materials,” J. Electromagn. Waves Appl.25(17-18), 2389–2398 (2011).
[CrossRef]

Alici, K. B.

Alu, A.

X.-X. Liu, D. A. Powell, and A. Alu, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B84(23), 235106 (2011).
[CrossRef]

Alù, A.

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).
[CrossRef]

Aydin, K.

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(2), 026610 (2009).
[CrossRef] [PubMed]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys.9(9), 326 (2007).
[CrossRef]

Baker-Jarvis, J.

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constrains applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas.41(5), 646–652 (1992).
[CrossRef]

Baker–Jarvis, J.

J. Baker–Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory Tech.38(8), 1096–1103 (1990).
[CrossRef]

Bandlow, B.

G. Lubkowski, B. Bandlow, R. Schuhmann, and T. Weiland, “Effective modeling of double negative metamaterial macrostructures,” IEEE Trans. Microw. Theory Tech.57(5), 1136–1146 (2009).
[CrossRef]

Barroso, J. J.

U. C. Hasar, J. J. Barroso, C. Sabah, and Y. Kaya, “Resolving phase ambiguity in the inverse problem of reflection-only measurement methods,” Prog. Electromagn. Res.129, 405–420 (2012).

U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res.112, 109–124 (2011).

J. J. Barroso and U. C. Hasar, “Resolving phase ambiguity in the inverse problem of transmission/reflection measurement methods,” Int. J. Infrared Millim. Waves32(6), 857–866 (2011).
[CrossRef]

J. J. Barroso and A. L. de Paula, “Retrieval of permittivity and permeability of homogeneous materials from scattering parameters,” J. Electromagn. Waves Appl.24(11-12), 1563–1574 (2010).
[CrossRef]

Basov, D. N.

T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B75(11), 115114 (2007).
[CrossRef]

Bossard, J. A.

Z. H. Jiang, J. A. Bossard, X. Wang, and D. H. Werner, “Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm,” J. Appl. Phys.109(1), 013515 (2011).
[CrossRef]

Boughriet, A. H.

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microw. Theory Tech.45(1), 52–57 (1997).
[CrossRef]

Bozzi, M.

M. Bozzi, L. Perregrini, J. Weinzierl, and C. Winnewisser, “Efficient analysis of quasi-optical filters by a hybrid MoM/Bi-RME method,” IEEE Trans. Antenn. Propag.49(7), 1054–1064 (2001).
[CrossRef]

Büyüköztürk, O.

O. Büyüköztürk, T.-Y. Yu, and J. A. Ortega, “A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements,” Cement Concr. Compos.28(4), 349–359 (2006).
[CrossRef]

Chalapat, K.

K. Chalapat, K. Sarvala, J. Li, and G. S. Paraoanu, “Wideband reference-plane invariant method for measuring electromagnetic parameters of materials,” IEEE Trans. Microw. Theory Tech.57(9), 2257–2267 (2009).
[CrossRef]

Chapoton, A.

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microw. Theory Tech.45(1), 52–57 (1997).
[CrossRef]

Chen, H.

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin materials using resonating metamaterials,” Prog. Electromagn. Res.120, 327–337 (2011).

Chen, X.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 046610 (2005).
[CrossRef] [PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
[CrossRef] [PubMed]

Chipouline, A.

Choi, M.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Cui, T. J.

T. J. Cui and J. A. Kong, “Time-domain electromagnetic energy in a frequency-dispersive left-handed medium,” Phys. Rev. B70(20), 205106 (2004).
[CrossRef]

de Paula, A. L.

J. J. Barroso and A. L. de Paula, “Retrieval of permittivity and permeability of homogeneous materials from scattering parameters,” J. Electromagn. Waves Appl.24(11-12), 1563–1574 (2010).
[CrossRef]

Demir, H. V.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett.95(1), 011106 (2009).
[CrossRef]

Diduszko, R.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).
[CrossRef]

Domich, P. D.

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constrains applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas.41(5), 646–652 (1992).
[CrossRef]

Driscoll, T.

T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B75(11), 115114 (2007).
[CrossRef]

Du, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

Economou, E. N.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Efeoglu, H.

Etrich, C.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).
[CrossRef]

Freire, M. J.

L. Jelinek, R. Marques, and M. J. Freire, “Accurate modeling of split ring metamaterial lenses for magnetic resonance imaging applications,” J. Appl. Phys.105(2), 024907 (2009).
[CrossRef]

Gajc, M.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).
[CrossRef]

Geyer, R. G.

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constrains applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas.41(5), 646–652 (1992).
[CrossRef]

Greegor, R. B.

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).
[CrossRef]

Grzegorczyk, T. M.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 046610 (2005).
[CrossRef] [PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
[CrossRef] [PubMed]

Hasar, U. C.

U. C. Hasar, I. Y. Ozbek, E. A. Oral, T. Karacali, and H. Efeoglu, “The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry-Perot cavities in sensing applications,” Opt. Express20(20), 22208–22223 (2012).
[CrossRef] [PubMed]

U. C. Hasar, J. J. Barroso, C. Sabah, and Y. Kaya, “Resolving phase ambiguity in the inverse problem of reflection-only measurement methods,” Prog. Electromagn. Res.129, 405–420 (2012).

U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res.112, 109–124 (2011).

U. C. Hasar and A. Abusoglu, “Using millimeter and terahertz frequencies for complex permittivity retrieval of low-loss materials,” J. Electromagn. Waves Appl.25(17-18), 2389–2398 (2011).
[CrossRef]

J. J. Barroso and U. C. Hasar, “Resolving phase ambiguity in the inverse problem of transmission/reflection measurement methods,” Int. J. Infrared Millim. Waves32(6), 857–866 (2011).
[CrossRef]

U. C. Hasar and I. Y. Ozbek, “Complex permittivity determination of lossy materials at millimeter and terahertz frequencies using free-space amplitude measurements,” J. Electromagn. Waves Appl.25(14-15), 2100–2109 (2011).
[CrossRef]

U. C. Hasar, “A microwave method for accurate and stable retrieval of constitutive parameters of low- and medium-loss materials,” IEEE Microw. Wirel. Compon. Lett.20(12), 696–698 (2010).
[CrossRef]

U. C. Hasar, “Procedure for accurate and stable constitutive parameters extraction of materials at microwave frequencies,” Prog. Electromagn. Res.109, 107–121 (2010).
[CrossRef]

U. C. Hasar, “Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies,” Prog. Electromagn. Res.107, 31–46 (2010).
[CrossRef]

U. C. Hasar and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microw. Theory Tech.57(2), 471–477 (2009).
[CrossRef]

Hedge, R.

Z. Szabo, G.-H. Park, R. Hedge, and E.-P. Li, “Unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microw. Theory Tech.58(10), 2646–2653 (2010).
[CrossRef]

Helgert, C.

Heyman, E.

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056625 (2001).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10(22), 4785–4809 (1998).
[CrossRef]

Huang, L.

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin materials using resonating metamaterials,” Prog. Electromagn. Res.120, 327–337 (2011).

Hubner, U.

Hudlicka, M.

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys.9(9), 326 (2007).
[CrossRef]

Jelinek, L.

L. Jelinek, R. Marques, and M. J. Freire, “Accurate modeling of split ring metamaterial lenses for magnetic resonance imaging applications,” J. Appl. Phys.105(2), 024907 (2009).
[CrossRef]

Jiang, Z. H.

Z. H. Jiang, J. A. Bossard, X. Wang, and D. H. Werner, “Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm,” J. Appl. Phys.109(1), 013515 (2011).
[CrossRef]

Kadlec, C.

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

Kadlec, F.

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

Kafesaki, M.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Kang, K. Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Kang, L.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Kapilevich, B.

B. Kapilevich, Y. Pinhasi, and B. Litvak, “Measurement of complex permittivity of lossy materials in free space using matched THz power meter,” Int. J. Infrared Millim. Waves32(12), 1446–1456 (2011).
[CrossRef]

Kapilevih, B.

B. Kapilevih and B. Litvak, “THz characterization of high-dielectric constant materials using double-layer sample,” Microw. Opt. Technol. Lett.49(6), 1388–1391 (2007).
[CrossRef]

Karacali, T.

Kaya, Y.

U. C. Hasar, J. J. Barroso, C. Sabah, and Y. Kaya, “Resolving phase ambiguity in the inverse problem of reflection-only measurement methods,” Prog. Electromagn. Res.129, 405–420 (2012).

Kettunen, H.

J. Qi, H. Kettunen, H. Wallen, and A. Sihvola, “Compensation of Fabry-Perot resonances in homogenization of dielectric composites,” IEEE Antennas Wireless Propag. Lett.9, 1057–1060 (2010).
[CrossRef]

Kim, Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Kissick, W. A.

J. Baker–Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory Tech.38(8), 1096–1103 (1990).
[CrossRef]

Kley, E.-B.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).
[CrossRef]

Kline, S. J.

S. J. Kline and F. A. McClintock, “Describing uncertainties in single−sample experiments,” Mech. Eng.75, 3 (1953).

Kolodziejak, K.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).
[CrossRef]

Kong, J. A.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 046610 (2005).
[CrossRef] [PubMed]

T. J. Cui and J. A. Kong, “Time-domain electromagnetic energy in a frequency-dispersive left-handed medium,” Phys. Rev. B70(20), 205106 (2004).
[CrossRef]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
[CrossRef] [PubMed]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

Koschny, Th.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Kuzel, P.

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Lalanne, P.

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).
[CrossRef]

Lederer, F.

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).
[CrossRef]

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).
[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).
[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77(19), 195328 (2008).
[CrossRef]

Lee, S. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Lee, Y. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Legrand, C.

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microw. Theory Tech.45(1), 52–57 (1997).
[CrossRef]

Li, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

Li, E.-P.

Z. Szabo, G.-H. Park, R. Hedge, and E.-P. Li, “Unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microw. Theory Tech.58(10), 2646–2653 (2010).
[CrossRef]

Li, J.

K. Chalapat, K. Sarvala, J. Li, and G. S. Paraoanu, “Wideband reference-plane invariant method for measuring electromagnetic parameters of materials,” IEEE Trans. Microw. Theory Tech.57(9), 2257–2267 (2009).
[CrossRef]

Li, Z.

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(2), 026610 (2009).
[CrossRef] [PubMed]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys.9(9), 326 (2007).
[CrossRef]

Liang, X.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

Litvak, B.

B. Kapilevich, Y. Pinhasi, and B. Litvak, “Measurement of complex permittivity of lossy materials in free space using matched THz power meter,” Int. J. Infrared Millim. Waves32(12), 1446–1456 (2011).
[CrossRef]

B. Kapilevih and B. Litvak, “THz characterization of high-dielectric constant materials using double-layer sample,” Microw. Opt. Technol. Lett.49(6), 1388–1391 (2007).
[CrossRef]

Liu, X.-X.

X.-X. Liu, D. A. Powell, and A. Alu, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B84(23), 235106 (2011).
[CrossRef]

Lubkowski, G.

G. Lubkowski, B. Bandlow, R. Schuhmann, and T. Weiland, “Effective modeling of double negative metamaterial macrostructures,” IEEE Trans. Microw. Theory Tech.57(5), 1136–1146 (2009).
[CrossRef]

G. Lubkowski, R. Schuhmann, and T. Weiland, “Extraction of effective metamaterial parameters by parameter fitting of dispersive models,” Microw. Opt. Technol. Lett.49(2), 285–288 (2007).
[CrossRef]

Luukkonen, O.

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A tespwise Nicolson-Ross-Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).
[CrossRef]

Markos, P.

P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express11(7), 649–661 (2003).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

Marques, R.

L. Jelinek, R. Marques, and M. J. Freire, “Accurate modeling of split ring metamaterial lenses for magnetic resonance imaging applications,” J. Appl. Phys.105(2), 024907 (2009).
[CrossRef]

Marqués, R.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B65(14), 144440 (2002).
[CrossRef]

Maslovski, S. I.

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A tespwise Nicolson-Ross-Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).
[CrossRef]

McClintock, F. A.

S. J. Kline and F. A. McClintock, “Describing uncertainties in single−sample experiments,” Mech. Eng.75, 3 (1953).

Medina, F.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B65(14), 144440 (2002).
[CrossRef]

Melik, R.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett.95(1), 011106 (2009).
[CrossRef]

Menzel, C.

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).
[CrossRef]

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).
[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).
[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77(19), 195328 (2008).
[CrossRef]

Min, B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Mock, J. J.

T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B75(11), 115114 (2007).
[CrossRef]

D. R. Smith, D. Schurig, and J. J. Mock, “Characterization of a planar artificial magnetic metamaterial surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(3), 036604 (2006).
[CrossRef] [PubMed]

Mounaix, P.

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

Muqaibel, A. H.

A. H. Muqaibel and A. Safaai-Jazi, “A new formulation for characterization of materials based on measured insertion transfer function,” IEEE Trans. Microw. Theory Tech.51(8), 1946–1951 (2003).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Nemec, H.

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

Nicolson, A. M.

A. M. Nicolson and G. Ross, “Measurement of the intrinsic properties of materials by time–domain techniques,” IEEE Trans. Instrum. Meas.19(4), 377–382 (1970).
[CrossRef]

Notomi, M.

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B62(16), 10696–10705 (2000).
[CrossRef]

Oral, E. A.

Ortega, J. A.

O. Büyüköztürk, T.-Y. Yu, and J. A. Ortega, “A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements,” Cement Concr. Compos.28(4), 349–359 (2006).
[CrossRef]

Ozbay, E.

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(2), 026610 (2009).
[CrossRef] [PubMed]

K. B. Alici and E. Ozbay, “Oblique response of a split-ring-resonator-based left-handed metamaterial slab,” Opt. Lett.34(15), 2294–2296 (2009).
[CrossRef] [PubMed]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys.9(9), 326 (2007).
[CrossRef]

Ozbek, I. Y.

U. C. Hasar, I. Y. Ozbek, E. A. Oral, T. Karacali, and H. Efeoglu, “The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry-Perot cavities in sensing applications,” Opt. Express20(20), 22208–22223 (2012).
[CrossRef] [PubMed]

U. C. Hasar and I. Y. Ozbek, “Complex permittivity determination of lossy materials at millimeter and terahertz frequencies using free-space amplitude measurements,” J. Electromagn. Waves Appl.25(14-15), 2100–2109 (2011).
[CrossRef]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
[CrossRef] [PubMed]

Padilla, W. J.

T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B75(11), 115114 (2007).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Paraoanu, G. S.

K. Chalapat, K. Sarvala, J. Li, and G. S. Paraoanu, “Wideband reference-plane invariant method for measuring electromagnetic parameters of materials,” IEEE Trans. Microw. Theory Tech.57(9), 2257–2267 (2009).
[CrossRef]

Parazzoli, C. G.

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).
[CrossRef]

Park, G.-H.

Z. Szabo, G.-H. Park, R. Hedge, and E.-P. Li, “Unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microw. Theory Tech.58(10), 2646–2653 (2010).
[CrossRef]

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Paul, T.

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).
[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77(19), 195328 (2008).
[CrossRef]

Pawlak, D. A.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).
[CrossRef]

Pendry, J. B.

W. H. Wee and J. B. Pendry, “Universal evolution of perfect lenses,” Phys. Rev. Lett.106(16), 165503 (2011).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10(22), 4785–4809 (1998).
[CrossRef]

Perkgoz, N. K.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett.95(1), 011106 (2009).
[CrossRef]

Perregrini, L.

M. Bozzi, L. Perregrini, J. Weinzierl, and C. Winnewisser, “Efficient analysis of quasi-optical filters by a hybrid MoM/Bi-RME method,” IEEE Trans. Antenn. Propag.49(7), 1054–1064 (2001).
[CrossRef]

Pertsch, T.

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).
[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).
[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77(19), 195328 (2008).
[CrossRef]

Pinhasi, Y.

B. Kapilevich, Y. Pinhasi, and B. Litvak, “Measurement of complex permittivity of lossy materials in free space using matched THz power meter,” Int. J. Infrared Millim. Waves32(12), 1446–1456 (2011).
[CrossRef]

Powell, D. A.

X.-X. Liu, D. A. Powell, and A. Alu, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B84(23), 235106 (2011).
[CrossRef]

Price, K.

R. Storn and K. Price, “Differential evaluation–A simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim.11(4), 341–359 (1997).
[CrossRef]

Pshenay-Severin, E.

Puttlitz, C.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett.95(1), 011106 (2009).
[CrossRef]

Qi, J.

J. Qi, H. Kettunen, H. Wallen, and A. Sihvola, “Compensation of Fabry-Perot resonances in homogenization of dielectric composites,” IEEE Antennas Wireless Propag. Lett.9, 1057–1060 (2010).
[CrossRef]

Rafii-El-Idrissi, R.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B65(14), 144440 (2002).
[CrossRef]

Ro, R.

V. V. Varadan and R. Ro, “Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality,” IEEE Trans. Microw. Theory Tech.55(10), 2224–2230 (2007).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10(22), 4785–4809 (1998).
[CrossRef]

Rockstuhl, C.

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).
[CrossRef]

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).
[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).
[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77(19), 195328 (2008).
[CrossRef]

Ross, G.

A. M. Nicolson and G. Ross, “Measurement of the intrinsic properties of materials by time–domain techniques,” IEEE Trans. Instrum. Meas.19(4), 377–382 (1970).
[CrossRef]

Rozniatowski, K.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).
[CrossRef]

Sabah, C.

U. C. Hasar, J. J. Barroso, C. Sabah, and Y. Kaya, “Resolving phase ambiguity in the inverse problem of reflection-only measurement methods,” Prog. Electromagn. Res.129, 405–420 (2012).

C. Sabah, “Multi-resonant metamaterial design based on concentric V -shaped magnetic resonators,” J. Electromagn. Waves Appl.26(8-9), 1105–1115 (2012).
[CrossRef]

C. Sabah, “Multiband planar metamaterials,” Microw. Opt. Technol. Lett.53(10), 2255–2258 (2011).
[CrossRef]

C. Sabah and S. Uckun, “Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Prog. Electromagn. Res.91, 349–364 (2009).
[CrossRef]

Safaai-Jazi, A.

A. H. Muqaibel and A. Safaai-Jazi, “A new formulation for characterization of materials based on measured insertion transfer function,” IEEE Trans. Microw. Theory Tech.51(8), 1946–1951 (2003).
[CrossRef]

Sarvala, K.

K. Chalapat, K. Sarvala, J. Li, and G. S. Paraoanu, “Wideband reference-plane invariant method for measuring electromagnetic parameters of materials,” IEEE Trans. Microw. Theory Tech.57(9), 2257–2267 (2009).
[CrossRef]

Schuhmann, R.

G. Lubkowski, B. Bandlow, R. Schuhmann, and T. Weiland, “Effective modeling of double negative metamaterial macrostructures,” IEEE Trans. Microw. Theory Tech.57(5), 1136–1146 (2009).
[CrossRef]

G. Lubkowski, R. Schuhmann, and T. Weiland, “Extraction of effective metamaterial parameters by parameter fitting of dispersive models,” Microw. Opt. Technol. Lett.49(2), 285–288 (2007).
[CrossRef]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).
[CrossRef]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. R. Smith, D. Schurig, and J. J. Mock, “Characterization of a planar artificial magnetic metamaterial surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(3), 036604 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Setzpfandt, F.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Sihvola, A.

J. Qi, H. Kettunen, H. Wallen, and A. Sihvola, “Compensation of Fabry-Perot resonances in homogenization of dielectric composites,” IEEE Antennas Wireless Propag. Lett.9, 1057–1060 (2010).
[CrossRef]

Smalc, J.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).
[CrossRef]

Smigaj, W.

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).
[CrossRef]

Smith, D. R.

T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B75(11), 115114 (2007).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. R. Smith, D. Schurig, and J. J. Mock, “Characterization of a planar artificial magnetic metamaterial surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(3), 036604 (2006).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express11(7), 649–661 (2003).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10(22), 4785–4809 (1998).
[CrossRef]

Storn, R.

R. Storn and K. Price, “Differential evaluation–A simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim.11(4), 341–359 (1997).
[CrossRef]

Szabo, Z.

Z. Szabo, G.-H. Park, R. Hedge, and E.-P. Li, “Unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microw. Theory Tech.58(10), 2646–2653 (2010).
[CrossRef]

Tang, H.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

Tretyakov, S. A.

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A tespwise Nicolson-Ross-Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).
[CrossRef]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys.9(9), 326 (2007).
[CrossRef]

Tunnermann, A.

Turczynski, S.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).
[CrossRef]

Uckun, S.

C. Sabah and S. Uckun, “Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Prog. Electromagn. Res.91, 349–364 (2009).
[CrossRef]

Unal, E.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett.95(1), 011106 (2009).
[CrossRef]

Vanzura, E. J.

J. Baker–Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory Tech.38(8), 1096–1103 (1990).
[CrossRef]

Varadan, V. V.

V. V. Varadan and R. Ro, “Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality,” IEEE Trans. Microw. Theory Tech.55(10), 2224–2230 (2007).
[CrossRef]

Vendik, I.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values ofε and μ, ” Sov. Phys. Uspekhi10, 509–514 (1968).
[CrossRef]

Vetter, A. M.

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).
[CrossRef]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Wallen, H.

J. Qi, H. Kettunen, H. Wallen, and A. Sihvola, “Compensation of Fabry-Perot resonances in homogenization of dielectric composites,” IEEE Antennas Wireless Propag. Lett.9, 1057–1060 (2010).
[CrossRef]

Wang, X.

Z. H. Jiang, J. A. Bossard, X. Wang, and D. H. Werner, “Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm,” J. Appl. Phys.109(1), 013515 (2011).
[CrossRef]

Wee, W. H.

W. H. Wee and J. B. Pendry, “Universal evolution of perfect lenses,” Phys. Rev. Lett.106(16), 165503 (2011).
[CrossRef] [PubMed]

Wei, X.

S. Xia, Z. Xu, and X. Wei, “Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency,” Rev. Sci. Instrum.80(11), 114703 (2009).
[CrossRef] [PubMed]

Weiland, T.

G. Lubkowski, B. Bandlow, R. Schuhmann, and T. Weiland, “Effective modeling of double negative metamaterial macrostructures,” IEEE Trans. Microw. Theory Tech.57(5), 1136–1146 (2009).
[CrossRef]

G. Lubkowski, R. Schuhmann, and T. Weiland, “Extraction of effective metamaterial parameters by parameter fitting of dispersive models,” Microw. Opt. Technol. Lett.49(2), 285–288 (2007).
[CrossRef]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).
[CrossRef]

Weinzierl, J.

M. Bozzi, L. Perregrini, J. Weinzierl, and C. Winnewisser, “Efficient analysis of quasi-optical filters by a hybrid MoM/Bi-RME method,” IEEE Trans. Antenn. Propag.49(7), 1054–1064 (2001).
[CrossRef]

Weir, W. B.

W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE62(1), 33–36 (1974).
[CrossRef]

Werner, D. H.

Z. H. Jiang, J. A. Bossard, X. Wang, and D. H. Werner, “Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm,” J. Appl. Phys.109(1), 013515 (2011).
[CrossRef]

Westgate, C. R.

U. C. Hasar and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microw. Theory Tech.57(2), 471–477 (2009).
[CrossRef]

Winnewisser, C.

M. Bozzi, L. Perregrini, J. Weinzierl, and C. Winnewisser, “Efficient analysis of quasi-optical filters by a hybrid MoM/Bi-RME method,” IEEE Trans. Antenn. Propag.49(7), 1054–1064 (2001).
[CrossRef]

Wu, B.-I.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 046610 (2005).
[CrossRef] [PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
[CrossRef] [PubMed]

Xia, S.

S. Xia, Z. Xu, and X. Wei, “Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency,” Rev. Sci. Instrum.80(11), 114703 (2009).
[CrossRef] [PubMed]

Xu, S.

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin materials using resonating metamaterials,” Prog. Electromagn. Res.120, 327–337 (2011).

Xu, Z.

S. Xia, Z. Xu, and X. Wei, “Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency,” Rev. Sci. Instrum.80(11), 114703 (2009).
[CrossRef] [PubMed]

Yahiaoui, R.

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

Yang, L.

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin materials using resonating metamaterials,” Prog. Electromagn. Res.120, 327–337 (2011).

Yu, T.-Y.

O. Büyüköztürk, T.-Y. Yu, and J. A. Ortega, “A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements,” Cement Concr. Compos.28(4), 349–359 (2006).
[CrossRef]

Zhang, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

Zhao, Q.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

Zhou, J.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Ziolkowski, R. W.

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056625 (2001).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett.95(1), 011106 (2009).
[CrossRef]

Cement Concr. Compos. (1)

O. Büyüköztürk, T.-Y. Yu, and J. A. Ortega, “A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements,” Cement Concr. Compos.28(4), 349–359 (2006).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett. (1)

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A tespwise Nicolson-Ross-Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).
[CrossRef]

IEEE Antennas Wireless Propag. Lett. (1)

J. Qi, H. Kettunen, H. Wallen, and A. Sihvola, “Compensation of Fabry-Perot resonances in homogenization of dielectric composites,” IEEE Antennas Wireless Propag. Lett.9, 1057–1060 (2010).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

U. C. Hasar, “A microwave method for accurate and stable retrieval of constitutive parameters of low- and medium-loss materials,” IEEE Microw. Wirel. Compon. Lett.20(12), 696–698 (2010).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

M. Bozzi, L. Perregrini, J. Weinzierl, and C. Winnewisser, “Efficient analysis of quasi-optical filters by a hybrid MoM/Bi-RME method,” IEEE Trans. Antenn. Propag.49(7), 1054–1064 (2001).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constrains applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas.41(5), 646–652 (1992).
[CrossRef]

A. M. Nicolson and G. Ross, “Measurement of the intrinsic properties of materials by time–domain techniques,” IEEE Trans. Instrum. Meas.19(4), 377–382 (1970).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (9)

A. H. Muqaibel and A. Safaai-Jazi, “A new formulation for characterization of materials based on measured insertion transfer function,” IEEE Trans. Microw. Theory Tech.51(8), 1946–1951 (2003).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Z. Szabo, G.-H. Park, R. Hedge, and E.-P. Li, “Unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microw. Theory Tech.58(10), 2646–2653 (2010).
[CrossRef]

V. V. Varadan and R. Ro, “Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality,” IEEE Trans. Microw. Theory Tech.55(10), 2224–2230 (2007).
[CrossRef]

G. Lubkowski, B. Bandlow, R. Schuhmann, and T. Weiland, “Effective modeling of double negative metamaterial macrostructures,” IEEE Trans. Microw. Theory Tech.57(5), 1136–1146 (2009).
[CrossRef]

J. Baker–Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory Tech.38(8), 1096–1103 (1990).
[CrossRef]

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microw. Theory Tech.45(1), 52–57 (1997).
[CrossRef]

U. C. Hasar and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microw. Theory Tech.57(2), 471–477 (2009).
[CrossRef]

K. Chalapat, K. Sarvala, J. Li, and G. S. Paraoanu, “Wideband reference-plane invariant method for measuring electromagnetic parameters of materials,” IEEE Trans. Microw. Theory Tech.57(9), 2257–2267 (2009).
[CrossRef]

Int. J. Infrared Millim. Waves (2)

J. J. Barroso and U. C. Hasar, “Resolving phase ambiguity in the inverse problem of transmission/reflection measurement methods,” Int. J. Infrared Millim. Waves32(6), 857–866 (2011).
[CrossRef]

B. Kapilevich, Y. Pinhasi, and B. Litvak, “Measurement of complex permittivity of lossy materials in free space using matched THz power meter,” Int. J. Infrared Millim. Waves32(12), 1446–1456 (2011).
[CrossRef]

J. Appl. Phys. (3)

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).
[CrossRef]

L. Jelinek, R. Marques, and M. J. Freire, “Accurate modeling of split ring metamaterial lenses for magnetic resonance imaging applications,” J. Appl. Phys.105(2), 024907 (2009).
[CrossRef]

Z. H. Jiang, J. A. Bossard, X. Wang, and D. H. Werner, “Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm,” J. Appl. Phys.109(1), 013515 (2011).
[CrossRef]

J. Electromagn. Waves Appl. (4)

C. Sabah, “Multi-resonant metamaterial design based on concentric V -shaped magnetic resonators,” J. Electromagn. Waves Appl.26(8-9), 1105–1115 (2012).
[CrossRef]

U. C. Hasar and I. Y. Ozbek, “Complex permittivity determination of lossy materials at millimeter and terahertz frequencies using free-space amplitude measurements,” J. Electromagn. Waves Appl.25(14-15), 2100–2109 (2011).
[CrossRef]

U. C. Hasar and A. Abusoglu, “Using millimeter and terahertz frequencies for complex permittivity retrieval of low-loss materials,” J. Electromagn. Waves Appl.25(17-18), 2389–2398 (2011).
[CrossRef]

J. J. Barroso and A. L. de Paula, “Retrieval of permittivity and permeability of homogeneous materials from scattering parameters,” J. Electromagn. Waves Appl.24(11-12), 1563–1574 (2010).
[CrossRef]

J. Glob. Optim. (1)

R. Storn and K. Price, “Differential evaluation–A simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim.11(4), 341–359 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10(22), 4785–4809 (1998).
[CrossRef]

Mech. Eng. (1)

S. J. Kline and F. A. McClintock, “Describing uncertainties in single−sample experiments,” Mech. Eng.75, 3 (1953).

Microw. Opt. Technol. Lett. (3)

C. Sabah, “Multiband planar metamaterials,” Microw. Opt. Technol. Lett.53(10), 2255–2258 (2011).
[CrossRef]

B. Kapilevih and B. Litvak, “THz characterization of high-dielectric constant materials using double-layer sample,” Microw. Opt. Technol. Lett.49(6), 1388–1391 (2007).
[CrossRef]

G. Lubkowski, R. Schuhmann, and T. Weiland, “Extraction of effective metamaterial parameters by parameter fitting of dispersive models,” Microw. Opt. Technol. Lett.49(2), 285–288 (2007).
[CrossRef]

Nature (1)

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

New J. Phys. (1)

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys.9(9), 326 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (11)

T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B75(11), 115114 (2007).
[CrossRef]

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B65(14), 144440 (2002).
[CrossRef]

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).
[CrossRef]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B62(16), 10696–10705 (2000).
[CrossRef]

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).
[CrossRef]

X.-X. Liu, D. A. Powell, and A. Alu, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B84(23), 235106 (2011).
[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).
[CrossRef]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77(19), 195328 (2008).
[CrossRef]

T. J. Cui and J. A. Kong, “Time-domain electromagnetic energy in a frequency-dispersive left-handed medium,” Phys. Rev. B70(20), 205106 (2004).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (6)

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056625 (2001).
[CrossRef] [PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
[CrossRef] [PubMed]

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(2), 026610 (2009).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 046610 (2005).
[CrossRef] [PubMed]

D. R. Smith, D. Schurig, and J. J. Mock, “Characterization of a planar artificial magnetic metamaterial surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(3), 036604 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

W. H. Wee and J. B. Pendry, “Universal evolution of perfect lenses,” Phys. Rev. Lett.106(16), 165503 (2011).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Proc. IEEE (1)

W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE62(1), 33–36 (1974).
[CrossRef]

Prog. Electromagn. Res. (6)

U. C. Hasar, “Procedure for accurate and stable constitutive parameters extraction of materials at microwave frequencies,” Prog. Electromagn. Res.109, 107–121 (2010).
[CrossRef]

U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res.112, 109–124 (2011).

U. C. Hasar, “Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies,” Prog. Electromagn. Res.107, 31–46 (2010).
[CrossRef]

U. C. Hasar, J. J. Barroso, C. Sabah, and Y. Kaya, “Resolving phase ambiguity in the inverse problem of reflection-only measurement methods,” Prog. Electromagn. Res.129, 405–420 (2012).

C. Sabah and S. Uckun, “Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Prog. Electromagn. Res.91, 349–364 (2009).
[CrossRef]

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin materials using resonating metamaterials,” Prog. Electromagn. Res.120, 327–337 (2011).

Rev. Sci. Instrum. (1)

S. Xia, Z. Xu, and X. Wei, “Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency,” Rev. Sci. Instrum.80(11), 114703 (2009).
[CrossRef] [PubMed]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sov. Phys. Uspekhi (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values ofε and μ, ” Sov. Phys. Uspekhi10, 509–514 (1968).
[CrossRef]

Other (12)

R. E. Collin, Field Theory of Guided Waves (Wiley-IEEE Press, 1990).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

K. Price, R. Storn, and J. Lampinen, Differential Evolution - A Practical Approach to Global Optimization (Springer, 2005).

K. Price and R. Storn, “Differential evaluation (DE) for continuous function optimization,” http://www.icsi.berkeley.edu/~storn/code.html .

The MathWorks, http://www.mathworks.com .

J. Baker–Jarvis, M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, “Transmission/reflection and short–circuit line methods for measuring permittivity and permeability,” NIST, Boulder, CO, Tech. Note 1355, (1992).

G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists: A Comprehensive Guide (Academic Press, 2005).

E. Kreyszig, Advanced Engineering Mathematics (Wiley, 2006).

H. J. Pain, The Physics of Vibrations and Waves (Wiley, 2008).

C. Sabah, “Multiband metamaterials based on multiple concentric open ring resonators topology,” IEEE J. Sel. Topics Quantum Electron. 2012 (DOI#: 10.1109/JSTQE.2012.2193875).
[CrossRef]

D. M. Pozar, Microwave Engineering (Wiley, Hoboken, NJ, 2005).

C. Alexander and M. Sadiku, Fundamentals of Electric Circuits (McGraw-Hill, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1
Fig. 1

Schematic view of a single cell of a metamaterial (a) with SRRs only and (b) with SRRs and a wire.

Fig. 2
Fig. 2

Schematic view of a single cell of a metamaterial (a) with concentric open ring resonators only and (b) with concentric open ring resonators and a wire.

Fig. 3
Fig. 3

(a) Magnitude and (b) phase of the simulated S-parameters for the lossy SB&DB SRR MM slabs.

Fig. 4
Fig. 4

(a) Magnitude and (b) phase of the simulated S-parameters for the lossy SB&DB Composite MM slabs.

Fig. 5
Fig. 5

Real and imaginary parts of retrieved refractive index of the lossy SB&DB (a) SRR MM slab and (b) Composite MM slab using the analytical approach.

Fig. 6
Fig. 6

Real and imaginary parts of retrieved wave impedance of the lossy SB&DB (a) SRR MM slab and (b) Composite MM slab using the analytical approach.

Fig. 7
Fig. 7

Real and imaginary parts of retrieved permittivity of the lossy SB&DB (a) SRR MM slab and (b) Composite MM slab using the analytical approach.

Fig. 8
Fig. 8

Real and imaginary parts of retrieved permeability of the lossy SB&DB (a) SRR MM slab and (b) Composite MM slab using the analytical approach.

Fig. 9
Fig. 9

Real and imaginary parts of retrieved refractive index of the lossy SB&DB (a) SRR MM slab and (b) Composite MM slab using the dispersion model approach.

Fig. 10
Fig. 10

Real and imaginary parts of retrieved wave impedance of the lossy SB&DB (a) SRR MM slab and (b) Composite MM slab using the dispersion model approach.

Fig. 11
Fig. 11

Real and imaginary parts of retrieved permittivity of the lossy SB&DB (a) SRR MM slab and (b) Composite MM slab using the dispersion model approach.

Fig. 12
Fig. 12

Real and imaginary parts of retrieved permeability of the lossy SB&DB (a) SRR MM slab and (b) Composite MM slab using the dispersion model approach.

Fig. 13
Fig. 13

Frequency dependence of real and imaginary parts of (a) Δ ε r / ε r and (b) Δ μ r / μ r for the lossy SB&DB SRR MM slabs using the analytical approach.

Fig. 14
Fig. 14

Frequency dependence of real and imaginary parts of (a) Δ ε r / ε r and (b) Δ μ r / μ r for the lossy SB&DB Composite MM slabs using the analytical approach.

Fig. 15
Fig. 15

Frequency dependence of real and imaginary parts of (a) Δ ε r and (b) Δ μ r / μ r for the lossy SB&DB SRR MM slabs using the dispersive model approach.

Fig. 16
Fig. 16

Frequency dependence of real and imaginary parts of (a) Δ ε r / ε r and (b) Δ μ r / μ r for the lossy SB&DB Composite MM slabs using the dispersive model approach.

Fig. 17
Fig. 17

Frequency dependence of Δ μ r ' for lossy SB&DB SRR and Composite MM slabs obtained from (a) the analytical approach and (b) the dispersive model approach.

Fig. 18
Fig. 18

Frequency dependence of real and imaginary parts of (a) Δ ε r / ε r and (b) Δ μ r / μ r for the low-loss and lossy SB Composite MM slabs using the dispersive model approach.

Fig. 19
Fig. 19

Frequency dependence of real and imaginary parts of (a) ε r / d and (b) μ r / d for the lossy SB&DB Composite MM slabs using the analytical approach.

Fig. 20
Fig. 20

Frequency dependence of real and imaginary parts of (a) ε r / f and (b) μ r / f for the lossy SB&DB Composite MM slabs using the analytical approach.

Fig. 21
Fig. 21

Frequency dependence of real and imaginary parts of (a) ε r / d and (b) μ r / d for the lossy SB&DB Composite MM slabs using the dispersive model approach.

Fig. 22
Fig. 22

Frequency dependence of real and imaginary parts of (a) ε r / f and (b) μ r / f for the lossy SB&DB Composite MM slabs using the dispersive model approach.

Fig. 23
Fig. 23

Frequency dependence of real and imaginary parts of (a) ε r / d and (b) μ r / d for the low-loss and lossy SB Composite MM slabs using the dispersive model approach.

Fig. 24
Fig. 24

Frequency dependence of real and imaginary parts of (a) ε r / f and (b) μ r / f for the low-loss and lossy SB Composite MM slabs using the dispersive model approach.

Tables (3)

Tables Icon

Table 1 Optimized Drude/Lorentz Dispersive Parameters for the Lossy SB&DB SRR and Compos. MM Slabs

Tables Icon

Table 2 Important Largest Uncertainty Levels and their Reasons for the Lossy SB&DB SRR MM Slabs (the Number in Parentheses in a Superscript Denotes the Reason of Uncertainty Level)

Tables Icon

Table 3 Important Largest Uncertainty Levels and their Reasons for the Lossy SB&DB Composite MM Slabs (the Number in Parentheses in a Superscript Denotes the Reason of Uncertainty Level)

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

S 11 =| S 11 | e i θ 11 = Γ( 1 T 2 ) 1 Γ 2 T 2 = S 22 , S 21 =| S 21 | e i θ 21 = T( 1 Γ 2 ) 1 Γ 2 T 2 = S 12 ,
Γ= ( z1 ) / ( z+1 ) , T=exp( i k 0 nd ), k 0 = 2πf /c .
z= ( 1+ S 11 ) 2 S 21 2 ( 1 S 11 ) 2 S 21 2 , T= S 21 1 S 11 ( z1 ) / ( z+1 ) ,
n= [ ( lnT ) " 2πmi ( lnT ) ' ] / ( k 0 d ) , m=0,1,2,3...
ε r =n/z , μ r =nz.
ε r ( ω )= ε ω ep 2 ω( ω+i δ e ) , μ r ( ω )= μ ( μ s μ ) ω mp 2 ω( ω+i δ m ) ω mp 2 ,
ε r ( ω )= ε t=1 N ω ep(t) 2 ω( ω+i δ e(t) ) , μ r ( ω )= t=1 N [ μ (t) ( μ s(t) μ (t) ) ω mp(t) 2 ω( ω+i δ m(t) ) ω mp(t) 2 ] ,
1 ε 5, 0 δ e , δ m 5, 1 μ s 2.
ω ep + ε ( ω er 2 + δ e 2 ) , ω mp = ω mr 2 ( μ s + μ ) ω mr 4 ( μ s μ ) 2 4 μ μ s δ m 2 ω mr 2 2 μ s ,
Δξ ξ = 1 ξ u [ ( ξ | S u | Δ| S u | ) 2 + ( ξ θ u Δ θ u ) 2 ] + ( ξ d Δd ) 2 + ( ξ f Δf ) 2 ,
ε r | S 11 | = D e i θ 11 ADBC , ε r | S 21 | = B e i θ 21 ADBC , ε r d = DEBF ADBC , ε r f = DGBH ADBC ,
μ r | S 11 | = C D ε r | S 11 | , μ r | S 21 | = A B ε r | S 21 | , μ r d = EA ε r / d B , μ r f = GA ε r / f B ,
ε r θ u =i| S u | ε r | S u | , μ r θ u =i| S u | μ r | S u | , A= S 11 Γ Γ ε r + S 11 T T ε r ,
B= S 11 Γ Γ μ r + S 11 T T μ r , C= S 21 Γ Γ ε r + S 21 T T ε r , D= S 21 Γ Γ μ r + S 21 T T μ r ,
E= S 11 T T d , F= S 21 T T d , G= S 11 T T f , H= S 21 T T f .

Metrics