U. C. Hasar, J. J. Barroso, C. Sabah, and Y. Kaya, “Resolving phase ambiguity in the inverse problem of reflection-only measurement methods,” Prog. Electromagn. Res.129, 405–420 (2012).

C. Sabah, “Multi-resonant metamaterial design based on concentric V -shaped magnetic resonators,” J. Electromagn. Waves Appl.26(8-9), 1105–1115 (2012).

[CrossRef]

U. C. Hasar, I. Y. Ozbek, E. A. Oral, T. Karacali, and H. Efeoglu, “The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry-Perot cavities in sensing applications,” Opt. Express20(20), 22208–22223 (2012).

[CrossRef]
[PubMed]

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A tespwise Nicolson-Ross-Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).

[CrossRef]

J. J. Barroso and U. C. Hasar, “Resolving phase ambiguity in the inverse problem of transmission/reflection measurement methods,” Int. J. Infrared Millim. Waves32(6), 857–866 (2011).

[CrossRef]

U. C. Hasar and I. Y. Ozbek, “Complex permittivity determination of lossy materials at millimeter and terahertz frequencies using free-space amplitude measurements,” J. Electromagn. Waves Appl.25(14-15), 2100–2109 (2011).

[CrossRef]

U. C. Hasar and A. Abusoglu, “Using millimeter and terahertz frequencies for complex permittivity retrieval of low-loss materials,” J. Electromagn. Waves Appl.25(17-18), 2389–2398 (2011).

[CrossRef]

B. Kapilevich, Y. Pinhasi, and B. Litvak, “Measurement of complex permittivity of lossy materials in free space using matched THz power meter,” Int. J. Infrared Millim. Waves32(12), 1446–1456 (2011).

[CrossRef]

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin materials using resonating metamaterials,” Prog. Electromagn. Res.120, 327–337 (2011).

Z. H. Jiang, J. A. Bossard, X. Wang, and D. H. Werner, “Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm,” J. Appl. Phys.109(1), 013515 (2011).

[CrossRef]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).

[CrossRef]
[PubMed]

W. H. Wee and J. B. Pendry, “Universal evolution of perfect lenses,” Phys. Rev. Lett.106(16), 165503 (2011).

[CrossRef]
[PubMed]

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).

[CrossRef]

C. Sabah, “Multiband planar metamaterials,” Microw. Opt. Technol. Lett.53(10), 2255–2258 (2011).

[CrossRef]

U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res.112, 109–124 (2011).

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).

[CrossRef]

X.-X. Liu, D. A. Powell, and A. Alu, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B84(23), 235106 (2011).

[CrossRef]

U. C. Hasar, “A microwave method for accurate and stable retrieval of constitutive parameters of low- and medium-loss materials,” IEEE Microw. Wirel. Compon. Lett.20(12), 696–698 (2010).

[CrossRef]

U. C. Hasar, “Procedure for accurate and stable constitutive parameters extraction of materials at microwave frequencies,” Prog. Electromagn. Res.109, 107–121 (2010).

[CrossRef]

J. Qi, H. Kettunen, H. Wallen, and A. Sihvola, “Compensation of Fabry-Perot resonances in homogenization of dielectric composites,” IEEE Antennas Wireless Propag. Lett.9, 1057–1060 (2010).

[CrossRef]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).

[CrossRef]

J. J. Barroso and A. L. de Paula, “Retrieval of permittivity and permeability of homogeneous materials from scattering parameters,” J. Electromagn. Waves Appl.24(11-12), 1563–1574 (2010).

[CrossRef]

U. C. Hasar, “Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies,” Prog. Electromagn. Res.107, 31–46 (2010).

[CrossRef]

Z. Szabo, G.-H. Park, R. Hedge, and E.-P. Li, “Unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microw. Theory Tech.58(10), 2646–2653 (2010).

[CrossRef]

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).

[CrossRef]

S. Xia, Z. Xu, and X. Wei, “Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency,” Rev. Sci. Instrum.80(11), 114703 (2009).

[CrossRef]
[PubMed]

G. Lubkowski, B. Bandlow, R. Schuhmann, and T. Weiland, “Effective modeling of double negative metamaterial macrostructures,” IEEE Trans. Microw. Theory Tech.57(5), 1136–1146 (2009).

[CrossRef]

K. Chalapat, K. Sarvala, J. Li, and G. S. Paraoanu, “Wideband reference-plane invariant method for measuring electromagnetic parameters of materials,” IEEE Trans. Microw. Theory Tech.57(9), 2257–2267 (2009).

[CrossRef]

K. B. Alici and E. Ozbay, “Oblique response of a split-ring-resonator-based left-handed metamaterial slab,” Opt. Lett.34(15), 2294–2296 (2009).

[CrossRef]
[PubMed]

C. Sabah and S. Uckun, “Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Prog. Electromagn. Res.91, 349–364 (2009).

[CrossRef]

U. C. Hasar and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microw. Theory Tech.57(2), 471–477 (2009).

[CrossRef]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett.95(1), 011106 (2009).

[CrossRef]

L. Jelinek, R. Marques, and M. J. Freire, “Accurate modeling of split ring metamaterial lenses for magnetic resonance imaging applications,” J. Appl. Phys.105(2), 024907 (2009).

[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).

[CrossRef]

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(2), 026610 (2009).

[CrossRef]
[PubMed]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77(19), 195328 (2008).

[CrossRef]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys.9(9), 326 (2007).

[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).

[CrossRef]

G. Lubkowski, R. Schuhmann, and T. Weiland, “Extraction of effective metamaterial parameters by parameter fitting of dispersive models,” Microw. Opt. Technol. Lett.49(2), 285–288 (2007).

[CrossRef]

T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B75(11), 115114 (2007).

[CrossRef]

B. Kapilevih and B. Litvak, “THz characterization of high-dielectric constant materials using double-layer sample,” Microw. Opt. Technol. Lett.49(6), 1388–1391 (2007).

[CrossRef]

V. V. Varadan and R. Ro, “Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality,” IEEE Trans. Microw. Theory Tech.55(10), 2224–2230 (2007).

[CrossRef]

O. Büyüköztürk, T.-Y. Yu, and J. A. Ortega, “A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements,” Cement Concr. Compos.28(4), 349–359 (2006).

[CrossRef]

D. R. Smith, D. Schurig, and J. J. Mock, “Characterization of a planar artificial magnetic metamaterial surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(3), 036604 (2006).

[CrossRef]
[PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).

[CrossRef]
[PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).

[CrossRef]
[PubMed]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 046610 (2005).

[CrossRef]
[PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).

[CrossRef]
[PubMed]

T. J. Cui and J. A. Kong, “Time-domain electromagnetic energy in a frequency-dispersive left-handed medium,” Phys. Rev. B70(20), 205106 (2004).

[CrossRef]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).

[CrossRef]
[PubMed]

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B65(14), 144440 (2002).

[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).

[CrossRef]
[PubMed]

M. Bozzi, L. Perregrini, J. Weinzierl, and C. Winnewisser, “Efficient analysis of quasi-optical filters by a hybrid MoM/Bi-RME method,” IEEE Trans. Antenn. Propag.49(7), 1054–1064 (2001).

[CrossRef]

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056625 (2001).

[CrossRef]
[PubMed]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).

[CrossRef]
[PubMed]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B62(16), 10696–10705 (2000).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10(22), 4785–4809 (1998).

[CrossRef]

R. Storn and K. Price, “Differential evaluation–A simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim.11(4), 341–359 (1997).

[CrossRef]

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microw. Theory Tech.45(1), 52–57 (1997).

[CrossRef]

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constrains applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas.41(5), 646–652 (1992).

[CrossRef]

J. Baker–Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory Tech.38(8), 1096–1103 (1990).

[CrossRef]

W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE62(1), 33–36 (1974).

[CrossRef]

A. M. Nicolson and G. Ross, “Measurement of the intrinsic properties of materials by time–domain techniques,” IEEE Trans. Instrum. Meas.19(4), 377–382 (1970).

[CrossRef]

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values ofε and μ, ” Sov. Phys. Uspekhi10, 509–514 (1968).

[CrossRef]

S. J. Kline and F. A. McClintock, “Describing uncertainties in single−sample experiments,” Mech. Eng.75, 3 (1953).

U. C. Hasar and A. Abusoglu, “Using millimeter and terahertz frequencies for complex permittivity retrieval of low-loss materials,” J. Electromagn. Waves Appl.25(17-18), 2389–2398 (2011).

[CrossRef]

X.-X. Liu, D. A. Powell, and A. Alu, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B84(23), 235106 (2011).

[CrossRef]

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).

[CrossRef]

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(2), 026610 (2009).

[CrossRef]
[PubMed]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys.9(9), 326 (2007).

[CrossRef]

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constrains applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas.41(5), 646–652 (1992).

[CrossRef]

J. Baker–Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory Tech.38(8), 1096–1103 (1990).

[CrossRef]

G. Lubkowski, B. Bandlow, R. Schuhmann, and T. Weiland, “Effective modeling of double negative metamaterial macrostructures,” IEEE Trans. Microw. Theory Tech.57(5), 1136–1146 (2009).

[CrossRef]

U. C. Hasar, J. J. Barroso, C. Sabah, and Y. Kaya, “Resolving phase ambiguity in the inverse problem of reflection-only measurement methods,” Prog. Electromagn. Res.129, 405–420 (2012).

U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res.112, 109–124 (2011).

J. J. Barroso and U. C. Hasar, “Resolving phase ambiguity in the inverse problem of transmission/reflection measurement methods,” Int. J. Infrared Millim. Waves32(6), 857–866 (2011).

[CrossRef]

J. J. Barroso and A. L. de Paula, “Retrieval of permittivity and permeability of homogeneous materials from scattering parameters,” J. Electromagn. Waves Appl.24(11-12), 1563–1574 (2010).

[CrossRef]

T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B75(11), 115114 (2007).

[CrossRef]

Z. H. Jiang, J. A. Bossard, X. Wang, and D. H. Werner, “Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm,” J. Appl. Phys.109(1), 013515 (2011).

[CrossRef]

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microw. Theory Tech.45(1), 52–57 (1997).

[CrossRef]

M. Bozzi, L. Perregrini, J. Weinzierl, and C. Winnewisser, “Efficient analysis of quasi-optical filters by a hybrid MoM/Bi-RME method,” IEEE Trans. Antenn. Propag.49(7), 1054–1064 (2001).

[CrossRef]

O. Büyüköztürk, T.-Y. Yu, and J. A. Ortega, “A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements,” Cement Concr. Compos.28(4), 349–359 (2006).

[CrossRef]

K. Chalapat, K. Sarvala, J. Li, and G. S. Paraoanu, “Wideband reference-plane invariant method for measuring electromagnetic parameters of materials,” IEEE Trans. Microw. Theory Tech.57(9), 2257–2267 (2009).

[CrossRef]

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microw. Theory Tech.45(1), 52–57 (1997).

[CrossRef]

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin materials using resonating metamaterials,” Prog. Electromagn. Res.120, 327–337 (2011).

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 046610 (2005).

[CrossRef]
[PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).

[CrossRef]
[PubMed]

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).

[CrossRef]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).

[CrossRef]
[PubMed]

T. J. Cui and J. A. Kong, “Time-domain electromagnetic energy in a frequency-dispersive left-handed medium,” Phys. Rev. B70(20), 205106 (2004).

[CrossRef]

J. J. Barroso and A. L. de Paula, “Retrieval of permittivity and permeability of homogeneous materials from scattering parameters,” J. Electromagn. Waves Appl.24(11-12), 1563–1574 (2010).

[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett.95(1), 011106 (2009).

[CrossRef]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).

[CrossRef]

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constrains applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas.41(5), 646–652 (1992).

[CrossRef]

T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B75(11), 115114 (2007).

[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).

[CrossRef]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).

[CrossRef]
[PubMed]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).

[CrossRef]

L. Jelinek, R. Marques, and M. J. Freire, “Accurate modeling of split ring metamaterial lenses for magnetic resonance imaging applications,” J. Appl. Phys.105(2), 024907 (2009).

[CrossRef]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).

[CrossRef]

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constrains applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas.41(5), 646–652 (1992).

[CrossRef]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).

[CrossRef]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 046610 (2005).

[CrossRef]
[PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).

[CrossRef]
[PubMed]

U. C. Hasar, I. Y. Ozbek, E. A. Oral, T. Karacali, and H. Efeoglu, “The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry-Perot cavities in sensing applications,” Opt. Express20(20), 22208–22223 (2012).

[CrossRef]
[PubMed]

U. C. Hasar, J. J. Barroso, C. Sabah, and Y. Kaya, “Resolving phase ambiguity in the inverse problem of reflection-only measurement methods,” Prog. Electromagn. Res.129, 405–420 (2012).

U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res.112, 109–124 (2011).

U. C. Hasar and A. Abusoglu, “Using millimeter and terahertz frequencies for complex permittivity retrieval of low-loss materials,” J. Electromagn. Waves Appl.25(17-18), 2389–2398 (2011).

[CrossRef]

J. J. Barroso and U. C. Hasar, “Resolving phase ambiguity in the inverse problem of transmission/reflection measurement methods,” Int. J. Infrared Millim. Waves32(6), 857–866 (2011).

[CrossRef]

U. C. Hasar and I. Y. Ozbek, “Complex permittivity determination of lossy materials at millimeter and terahertz frequencies using free-space amplitude measurements,” J. Electromagn. Waves Appl.25(14-15), 2100–2109 (2011).

[CrossRef]

U. C. Hasar, “A microwave method for accurate and stable retrieval of constitutive parameters of low- and medium-loss materials,” IEEE Microw. Wirel. Compon. Lett.20(12), 696–698 (2010).

[CrossRef]

U. C. Hasar, “Procedure for accurate and stable constitutive parameters extraction of materials at microwave frequencies,” Prog. Electromagn. Res.109, 107–121 (2010).

[CrossRef]

U. C. Hasar, “Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies,” Prog. Electromagn. Res.107, 31–46 (2010).

[CrossRef]

U. C. Hasar and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microw. Theory Tech.57(2), 471–477 (2009).

[CrossRef]

Z. Szabo, G.-H. Park, R. Hedge, and E.-P. Li, “Unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microw. Theory Tech.58(10), 2646–2653 (2010).

[CrossRef]

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).

[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).

[CrossRef]

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056625 (2001).

[CrossRef]
[PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10(22), 4785–4809 (1998).

[CrossRef]

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin materials using resonating metamaterials,” Prog. Electromagn. Res.120, 327–337 (2011).

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).

[CrossRef]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys.9(9), 326 (2007).

[CrossRef]

L. Jelinek, R. Marques, and M. J. Freire, “Accurate modeling of split ring metamaterial lenses for magnetic resonance imaging applications,” J. Appl. Phys.105(2), 024907 (2009).

[CrossRef]

Z. H. Jiang, J. A. Bossard, X. Wang, and D. H. Werner, “Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm,” J. Appl. Phys.109(1), 013515 (2011).

[CrossRef]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).

[CrossRef]
[PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).

[CrossRef]
[PubMed]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).

[CrossRef]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).

[CrossRef]
[PubMed]

B. Kapilevich, Y. Pinhasi, and B. Litvak, “Measurement of complex permittivity of lossy materials in free space using matched THz power meter,” Int. J. Infrared Millim. Waves32(12), 1446–1456 (2011).

[CrossRef]

B. Kapilevih and B. Litvak, “THz characterization of high-dielectric constant materials using double-layer sample,” Microw. Opt. Technol. Lett.49(6), 1388–1391 (2007).

[CrossRef]

U. C. Hasar, J. J. Barroso, C. Sabah, and Y. Kaya, “Resolving phase ambiguity in the inverse problem of reflection-only measurement methods,” Prog. Electromagn. Res.129, 405–420 (2012).

J. Qi, H. Kettunen, H. Wallen, and A. Sihvola, “Compensation of Fabry-Perot resonances in homogenization of dielectric composites,” IEEE Antennas Wireless Propag. Lett.9, 1057–1060 (2010).

[CrossRef]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).

[CrossRef]
[PubMed]

J. Baker–Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory Tech.38(8), 1096–1103 (1990).

[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).

[CrossRef]

S. J. Kline and F. A. McClintock, “Describing uncertainties in single−sample experiments,” Mech. Eng.75, 3 (1953).

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).

[CrossRef]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 046610 (2005).

[CrossRef]
[PubMed]

T. J. Cui and J. A. Kong, “Time-domain electromagnetic energy in a frequency-dispersive left-handed medium,” Phys. Rev. B70(20), 205106 (2004).

[CrossRef]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).

[CrossRef]
[PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).

[CrossRef]
[PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).

[CrossRef]
[PubMed]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).

[CrossRef]
[PubMed]

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).

[CrossRef]

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).

[CrossRef]

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).

[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).

[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77(19), 195328 (2008).

[CrossRef]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).

[CrossRef]
[PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).

[CrossRef]
[PubMed]

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microw. Theory Tech.45(1), 52–57 (1997).

[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).

[CrossRef]

Z. Szabo, G.-H. Park, R. Hedge, and E.-P. Li, “Unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microw. Theory Tech.58(10), 2646–2653 (2010).

[CrossRef]

K. Chalapat, K. Sarvala, J. Li, and G. S. Paraoanu, “Wideband reference-plane invariant method for measuring electromagnetic parameters of materials,” IEEE Trans. Microw. Theory Tech.57(9), 2257–2267 (2009).

[CrossRef]

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(2), 026610 (2009).

[CrossRef]
[PubMed]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys.9(9), 326 (2007).

[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).

[CrossRef]

B. Kapilevich, Y. Pinhasi, and B. Litvak, “Measurement of complex permittivity of lossy materials in free space using matched THz power meter,” Int. J. Infrared Millim. Waves32(12), 1446–1456 (2011).

[CrossRef]

B. Kapilevih and B. Litvak, “THz characterization of high-dielectric constant materials using double-layer sample,” Microw. Opt. Technol. Lett.49(6), 1388–1391 (2007).

[CrossRef]

X.-X. Liu, D. A. Powell, and A. Alu, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B84(23), 235106 (2011).

[CrossRef]

G. Lubkowski, B. Bandlow, R. Schuhmann, and T. Weiland, “Effective modeling of double negative metamaterial macrostructures,” IEEE Trans. Microw. Theory Tech.57(5), 1136–1146 (2009).

[CrossRef]

G. Lubkowski, R. Schuhmann, and T. Weiland, “Extraction of effective metamaterial parameters by parameter fitting of dispersive models,” Microw. Opt. Technol. Lett.49(2), 285–288 (2007).

[CrossRef]

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A tespwise Nicolson-Ross-Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).

[CrossRef]

L. Jelinek, R. Marques, and M. J. Freire, “Accurate modeling of split ring metamaterial lenses for magnetic resonance imaging applications,” J. Appl. Phys.105(2), 024907 (2009).

[CrossRef]

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B65(14), 144440 (2002).

[CrossRef]

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A tespwise Nicolson-Ross-Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).

[CrossRef]

S. J. Kline and F. A. McClintock, “Describing uncertainties in single−sample experiments,” Mech. Eng.75, 3 (1953).

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B65(14), 144440 (2002).

[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett.95(1), 011106 (2009).

[CrossRef]

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).

[CrossRef]

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).

[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).

[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77(19), 195328 (2008).

[CrossRef]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).

[CrossRef]
[PubMed]

T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B75(11), 115114 (2007).

[CrossRef]

D. R. Smith, D. Schurig, and J. J. Mock, “Characterization of a planar artificial magnetic metamaterial surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(3), 036604 (2006).

[CrossRef]
[PubMed]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

A. H. Muqaibel and A. Safaai-Jazi, “A new formulation for characterization of materials based on measured insertion transfer function,” IEEE Trans. Microw. Theory Tech.51(8), 1946–1951 (2003).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

A. M. Nicolson and G. Ross, “Measurement of the intrinsic properties of materials by time–domain techniques,” IEEE Trans. Instrum. Meas.19(4), 377–382 (1970).

[CrossRef]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B62(16), 10696–10705 (2000).

[CrossRef]

O. Büyüköztürk, T.-Y. Yu, and J. A. Ortega, “A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements,” Cement Concr. Compos.28(4), 349–359 (2006).

[CrossRef]

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(2), 026610 (2009).

[CrossRef]
[PubMed]

K. B. Alici and E. Ozbay, “Oblique response of a split-ring-resonator-based left-handed metamaterial slab,” Opt. Lett.34(15), 2294–2296 (2009).

[CrossRef]
[PubMed]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys.9(9), 326 (2007).

[CrossRef]

U. C. Hasar, I. Y. Ozbek, E. A. Oral, T. Karacali, and H. Efeoglu, “The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry-Perot cavities in sensing applications,” Opt. Express20(20), 22208–22223 (2012).

[CrossRef]
[PubMed]

U. C. Hasar and I. Y. Ozbek, “Complex permittivity determination of lossy materials at millimeter and terahertz frequencies using free-space amplitude measurements,” J. Electromagn. Waves Appl.25(14-15), 2100–2109 (2011).

[CrossRef]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).

[CrossRef]
[PubMed]

T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B75(11), 115114 (2007).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

K. Chalapat, K. Sarvala, J. Li, and G. S. Paraoanu, “Wideband reference-plane invariant method for measuring electromagnetic parameters of materials,” IEEE Trans. Microw. Theory Tech.57(9), 2257–2267 (2009).

[CrossRef]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).

[CrossRef]

Z. Szabo, G.-H. Park, R. Hedge, and E.-P. Li, “Unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microw. Theory Tech.58(10), 2646–2653 (2010).

[CrossRef]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).

[CrossRef]
[PubMed]

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).

[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77(19), 195328 (2008).

[CrossRef]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).

[CrossRef]

W. H. Wee and J. B. Pendry, “Universal evolution of perfect lenses,” Phys. Rev. Lett.106(16), 165503 (2011).

[CrossRef]
[PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).

[CrossRef]
[PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).

[CrossRef]
[PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10(22), 4785–4809 (1998).

[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett.95(1), 011106 (2009).

[CrossRef]

M. Bozzi, L. Perregrini, J. Weinzierl, and C. Winnewisser, “Efficient analysis of quasi-optical filters by a hybrid MoM/Bi-RME method,” IEEE Trans. Antenn. Propag.49(7), 1054–1064 (2001).

[CrossRef]

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).

[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).

[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77(19), 195328 (2008).

[CrossRef]

B. Kapilevich, Y. Pinhasi, and B. Litvak, “Measurement of complex permittivity of lossy materials in free space using matched THz power meter,” Int. J. Infrared Millim. Waves32(12), 1446–1456 (2011).

[CrossRef]

X.-X. Liu, D. A. Powell, and A. Alu, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B84(23), 235106 (2011).

[CrossRef]

R. Storn and K. Price, “Differential evaluation–A simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim.11(4), 341–359 (1997).

[CrossRef]

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).

[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett.95(1), 011106 (2009).

[CrossRef]

J. Qi, H. Kettunen, H. Wallen, and A. Sihvola, “Compensation of Fabry-Perot resonances in homogenization of dielectric composites,” IEEE Antennas Wireless Propag. Lett.9, 1057–1060 (2010).

[CrossRef]

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B65(14), 144440 (2002).

[CrossRef]

V. V. Varadan and R. Ro, “Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality,” IEEE Trans. Microw. Theory Tech.55(10), 2224–2230 (2007).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10(22), 4785–4809 (1998).

[CrossRef]

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).

[CrossRef]

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).

[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).

[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77(19), 195328 (2008).

[CrossRef]

A. M. Nicolson and G. Ross, “Measurement of the intrinsic properties of materials by time–domain techniques,” IEEE Trans. Instrum. Meas.19(4), 377–382 (1970).

[CrossRef]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).

[CrossRef]

U. C. Hasar, J. J. Barroso, C. Sabah, and Y. Kaya, “Resolving phase ambiguity in the inverse problem of reflection-only measurement methods,” Prog. Electromagn. Res.129, 405–420 (2012).

C. Sabah, “Multi-resonant metamaterial design based on concentric V -shaped magnetic resonators,” J. Electromagn. Waves Appl.26(8-9), 1105–1115 (2012).

[CrossRef]

C. Sabah, “Multiband planar metamaterials,” Microw. Opt. Technol. Lett.53(10), 2255–2258 (2011).

[CrossRef]

C. Sabah and S. Uckun, “Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Prog. Electromagn. Res.91, 349–364 (2009).

[CrossRef]

A. H. Muqaibel and A. Safaai-Jazi, “A new formulation for characterization of materials based on measured insertion transfer function,” IEEE Trans. Microw. Theory Tech.51(8), 1946–1951 (2003).

[CrossRef]

K. Chalapat, K. Sarvala, J. Li, and G. S. Paraoanu, “Wideband reference-plane invariant method for measuring electromagnetic parameters of materials,” IEEE Trans. Microw. Theory Tech.57(9), 2257–2267 (2009).

[CrossRef]

G. Lubkowski, B. Bandlow, R. Schuhmann, and T. Weiland, “Effective modeling of double negative metamaterial macrostructures,” IEEE Trans. Microw. Theory Tech.57(5), 1136–1146 (2009).

[CrossRef]

G. Lubkowski, R. Schuhmann, and T. Weiland, “Extraction of effective metamaterial parameters by parameter fitting of dispersive models,” Microw. Opt. Technol. Lett.49(2), 285–288 (2007).

[CrossRef]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).

[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).

[CrossRef]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).

[CrossRef]
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

D. R. Smith, D. Schurig, and J. J. Mock, “Characterization of a planar artificial magnetic metamaterial surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(3), 036604 (2006).

[CrossRef]
[PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).

[CrossRef]
[PubMed]

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).

[CrossRef]
[PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).

[CrossRef]
[PubMed]

J. Qi, H. Kettunen, H. Wallen, and A. Sihvola, “Compensation of Fabry-Perot resonances in homogenization of dielectric composites,” IEEE Antennas Wireless Propag. Lett.9, 1057–1060 (2010).

[CrossRef]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).

[CrossRef]

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).

[CrossRef]

T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B75(11), 115114 (2007).

[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).

[CrossRef]
[PubMed]

D. R. Smith, D. Schurig, and J. J. Mock, “Characterization of a planar artificial magnetic metamaterial surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(3), 036604 (2006).

[CrossRef]
[PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).

[CrossRef]
[PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).

[CrossRef]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).

[CrossRef]
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).

[CrossRef]
[PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).

[CrossRef]
[PubMed]

P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express11(7), 649–661 (2003).

[CrossRef]
[PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10(22), 4785–4809 (1998).

[CrossRef]

R. Storn and K. Price, “Differential evaluation–A simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim.11(4), 341–359 (1997).

[CrossRef]

Z. Szabo, G.-H. Park, R. Hedge, and E.-P. Li, “Unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microw. Theory Tech.58(10), 2646–2653 (2010).

[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).

[CrossRef]

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A tespwise Nicolson-Ross-Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).

[CrossRef]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys.9(9), 326 (2007).

[CrossRef]

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).

[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).

[CrossRef]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).

[CrossRef]

C. Sabah and S. Uckun, “Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Prog. Electromagn. Res.91, 349–364 (2009).

[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett.95(1), 011106 (2009).

[CrossRef]

J. Baker–Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory Tech.38(8), 1096–1103 (1990).

[CrossRef]

V. V. Varadan and R. Ro, “Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality,” IEEE Trans. Microw. Theory Tech.55(10), 2224–2230 (2007).

[CrossRef]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).

[CrossRef]

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values ofε and μ, ” Sov. Phys. Uspekhi10, 509–514 (1968).

[CrossRef]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).

[CrossRef]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).

[CrossRef]
[PubMed]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

J. Qi, H. Kettunen, H. Wallen, and A. Sihvola, “Compensation of Fabry-Perot resonances in homogenization of dielectric composites,” IEEE Antennas Wireless Propag. Lett.9, 1057–1060 (2010).

[CrossRef]

Z. H. Jiang, J. A. Bossard, X. Wang, and D. H. Werner, “Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm,” J. Appl. Phys.109(1), 013515 (2011).

[CrossRef]

W. H. Wee and J. B. Pendry, “Universal evolution of perfect lenses,” Phys. Rev. Lett.106(16), 165503 (2011).

[CrossRef]
[PubMed]

S. Xia, Z. Xu, and X. Wei, “Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency,” Rev. Sci. Instrum.80(11), 114703 (2009).

[CrossRef]
[PubMed]

G. Lubkowski, B. Bandlow, R. Schuhmann, and T. Weiland, “Effective modeling of double negative metamaterial macrostructures,” IEEE Trans. Microw. Theory Tech.57(5), 1136–1146 (2009).

[CrossRef]

G. Lubkowski, R. Schuhmann, and T. Weiland, “Extraction of effective metamaterial parameters by parameter fitting of dispersive models,” Microw. Opt. Technol. Lett.49(2), 285–288 (2007).

[CrossRef]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).

[CrossRef]

M. Bozzi, L. Perregrini, J. Weinzierl, and C. Winnewisser, “Efficient analysis of quasi-optical filters by a hybrid MoM/Bi-RME method,” IEEE Trans. Antenn. Propag.49(7), 1054–1064 (2001).

[CrossRef]

W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE62(1), 33–36 (1974).

[CrossRef]

Z. H. Jiang, J. A. Bossard, X. Wang, and D. H. Werner, “Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm,” J. Appl. Phys.109(1), 013515 (2011).

[CrossRef]

U. C. Hasar and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microw. Theory Tech.57(2), 471–477 (2009).

[CrossRef]

M. Bozzi, L. Perregrini, J. Weinzierl, and C. Winnewisser, “Efficient analysis of quasi-optical filters by a hybrid MoM/Bi-RME method,” IEEE Trans. Antenn. Propag.49(7), 1054–1064 (2001).

[CrossRef]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 046610 (2005).

[CrossRef]
[PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).

[CrossRef]
[PubMed]

S. Xia, Z. Xu, and X. Wei, “Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency,” Rev. Sci. Instrum.80(11), 114703 (2009).

[CrossRef]
[PubMed]

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin materials using resonating metamaterials,” Prog. Electromagn. Res.120, 327–337 (2011).

S. Xia, Z. Xu, and X. Wei, “Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency,” Rev. Sci. Instrum.80(11), 114703 (2009).

[CrossRef]
[PubMed]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin materials using resonating metamaterials,” Prog. Electromagn. Res.120, 327–337 (2011).

O. Büyüköztürk, T.-Y. Yu, and J. A. Ortega, “A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements,” Cement Concr. Compos.28(4), 349–359 (2006).

[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).

[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).

[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).

[CrossRef]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).

[CrossRef]
[PubMed]

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056625 (2001).

[CrossRef]
[PubMed]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater.20(7), 1116–1124 (2010).

[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).

[CrossRef]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett.95(1), 011106 (2009).

[CrossRef]

O. Büyüköztürk, T.-Y. Yu, and J. A. Ortega, “A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements,” Cement Concr. Compos.28(4), 349–359 (2006).

[CrossRef]

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A tespwise Nicolson-Ross-Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett.10, 1295–1298 (2011).

[CrossRef]

J. Qi, H. Kettunen, H. Wallen, and A. Sihvola, “Compensation of Fabry-Perot resonances in homogenization of dielectric composites,” IEEE Antennas Wireless Propag. Lett.9, 1057–1060 (2010).

[CrossRef]

U. C. Hasar, “A microwave method for accurate and stable retrieval of constitutive parameters of low- and medium-loss materials,” IEEE Microw. Wirel. Compon. Lett.20(12), 696–698 (2010).

[CrossRef]

M. Bozzi, L. Perregrini, J. Weinzierl, and C. Winnewisser, “Efficient analysis of quasi-optical filters by a hybrid MoM/Bi-RME method,” IEEE Trans. Antenn. Propag.49(7), 1054–1064 (2001).

[CrossRef]

J. Baker-Jarvis, R. G. Geyer, and P. D. Domich, “A nonlinear least-squares solution with causality constrains applied to transmission line permittivity and permeability determination,” IEEE Trans. Instrum. Meas.41(5), 646–652 (1992).

[CrossRef]

A. M. Nicolson and G. Ross, “Measurement of the intrinsic properties of materials by time–domain techniques,” IEEE Trans. Instrum. Meas.19(4), 377–382 (1970).

[CrossRef]

A. H. Muqaibel and A. Safaai-Jazi, “A new formulation for characterization of materials based on measured insertion transfer function,” IEEE Trans. Microw. Theory Tech.51(8), 1946–1951 (2003).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).

[CrossRef]

Z. Szabo, G.-H. Park, R. Hedge, and E.-P. Li, “Unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microw. Theory Tech.58(10), 2646–2653 (2010).

[CrossRef]

V. V. Varadan and R. Ro, “Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality,” IEEE Trans. Microw. Theory Tech.55(10), 2224–2230 (2007).

[CrossRef]

G. Lubkowski, B. Bandlow, R. Schuhmann, and T. Weiland, “Effective modeling of double negative metamaterial macrostructures,” IEEE Trans. Microw. Theory Tech.57(5), 1136–1146 (2009).

[CrossRef]

J. Baker–Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory Tech.38(8), 1096–1103 (1990).

[CrossRef]

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microw. Theory Tech.45(1), 52–57 (1997).

[CrossRef]

U. C. Hasar and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microw. Theory Tech.57(2), 471–477 (2009).

[CrossRef]

K. Chalapat, K. Sarvala, J. Li, and G. S. Paraoanu, “Wideband reference-plane invariant method for measuring electromagnetic parameters of materials,” IEEE Trans. Microw. Theory Tech.57(9), 2257–2267 (2009).

[CrossRef]

J. J. Barroso and U. C. Hasar, “Resolving phase ambiguity in the inverse problem of transmission/reflection measurement methods,” Int. J. Infrared Millim. Waves32(6), 857–866 (2011).

[CrossRef]

B. Kapilevich, Y. Pinhasi, and B. Litvak, “Measurement of complex permittivity of lossy materials in free space using matched THz power meter,” Int. J. Infrared Millim. Waves32(12), 1446–1456 (2011).

[CrossRef]

T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, “Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments,” J. Appl. Phys.90(10), 5419–5424 (2001).

[CrossRef]

L. Jelinek, R. Marques, and M. J. Freire, “Accurate modeling of split ring metamaterial lenses for magnetic resonance imaging applications,” J. Appl. Phys.105(2), 024907 (2009).

[CrossRef]

Z. H. Jiang, J. A. Bossard, X. Wang, and D. H. Werner, “Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm,” J. Appl. Phys.109(1), 013515 (2011).

[CrossRef]

C. Sabah, “Multi-resonant metamaterial design based on concentric V -shaped magnetic resonators,” J. Electromagn. Waves Appl.26(8-9), 1105–1115 (2012).

[CrossRef]

U. C. Hasar and I. Y. Ozbek, “Complex permittivity determination of lossy materials at millimeter and terahertz frequencies using free-space amplitude measurements,” J. Electromagn. Waves Appl.25(14-15), 2100–2109 (2011).

[CrossRef]

U. C. Hasar and A. Abusoglu, “Using millimeter and terahertz frequencies for complex permittivity retrieval of low-loss materials,” J. Electromagn. Waves Appl.25(17-18), 2389–2398 (2011).

[CrossRef]

J. J. Barroso and A. L. de Paula, “Retrieval of permittivity and permeability of homogeneous materials from scattering parameters,” J. Electromagn. Waves Appl.24(11-12), 1563–1574 (2010).

[CrossRef]

R. Storn and K. Price, “Differential evaluation–A simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim.11(4), 341–359 (1997).

[CrossRef]

E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B27(4), 660–666 (2010).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter10(22), 4785–4809 (1998).

[CrossRef]

S. J. Kline and F. A. McClintock, “Describing uncertainties in single−sample experiments,” Mech. Eng.75, 3 (1953).

C. Sabah, “Multiband planar metamaterials,” Microw. Opt. Technol. Lett.53(10), 2255–2258 (2011).

[CrossRef]

B. Kapilevih and B. Litvak, “THz characterization of high-dielectric constant materials using double-layer sample,” Microw. Opt. Technol. Lett.49(6), 1388–1391 (2007).

[CrossRef]

G. Lubkowski, R. Schuhmann, and T. Weiland, “Extraction of effective metamaterial parameters by parameter fitting of dispersive models,” Microw. Opt. Technol. Lett.49(2), 285–288 (2007).

[CrossRef]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).

[CrossRef]
[PubMed]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys.9(9), 326 (2007).

[CrossRef]

U. C. Hasar, I. Y. Ozbek, E. A. Oral, T. Karacali, and H. Efeoglu, “The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry-Perot cavities in sensing applications,” Opt. Express20(20), 22208–22223 (2012).

[CrossRef]
[PubMed]

P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express11(7), 649–661 (2003).

[CrossRef]
[PubMed]

T. Driscoll, D. N. Basov, W. J. Padilla, J. J. Mock, and D. R. Smith, “Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements,” Phys. Rev. B75(11), 115114 (2007).

[CrossRef]

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B65(14), 144440 (2002).

[CrossRef]

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).

[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002).

[CrossRef]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B62(16), 10696–10705 (2000).

[CrossRef]

T. Paul, C. Menzel, W. Smigaj, C. Rockstuhl, P. Lalanne, and F. Lederer, “Reflection and transmission of light at periodic layered metamaterial films,” Phys. Rev. B84(11), 115142 (2011).

[CrossRef]

X.-X. Liu, D. A. Powell, and A. Alu, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B84(23), 235106 (2011).

[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “effective properties of amorphous metamaterials,” Phys. Rev. B79(23), 233107 (2009).

[CrossRef]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B79, 241108(R) (2009).

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77(19), 195328 (2008).

[CrossRef]

T. J. Cui and J. A. Kong, “Time-domain electromagnetic energy in a frequency-dispersive left-handed medium,” Phys. Rev. B70(20), 205106 (2004).

[CrossRef]

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056625 (2001).

[CrossRef]
[PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).

[CrossRef]
[PubMed]

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(2), 026610 (2009).

[CrossRef]
[PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).

[CrossRef]
[PubMed]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(4), 046610 (2005).

[CrossRef]
[PubMed]

D. R. Smith, D. Schurig, and J. J. Mock, “Characterization of a planar artificial magnetic metamaterial surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(3), 036604 (2006).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).

[CrossRef]
[PubMed]

W. H. Wee and J. B. Pendry, “Universal evolution of perfect lenses,” Phys. Rev. Lett.106(16), 165503 (2011).

[CrossRef]
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).

[CrossRef]
[PubMed]

W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE62(1), 33–36 (1974).

[CrossRef]

U. C. Hasar, “Procedure for accurate and stable constitutive parameters extraction of materials at microwave frequencies,” Prog. Electromagn. Res.109, 107–121 (2010).

[CrossRef]

U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res.112, 109–124 (2011).

U. C. Hasar, “Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies,” Prog. Electromagn. Res.107, 31–46 (2010).

[CrossRef]

U. C. Hasar, J. J. Barroso, C. Sabah, and Y. Kaya, “Resolving phase ambiguity in the inverse problem of reflection-only measurement methods,” Prog. Electromagn. Res.129, 405–420 (2012).

C. Sabah and S. Uckun, “Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Prog. Electromagn. Res.91, 349–364 (2009).

[CrossRef]

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin materials using resonating metamaterials,” Prog. Electromagn. Res.120, 327–337 (2011).

S. Xia, Z. Xu, and X. Wei, “Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency,” Rev. Sci. Instrum.80(11), 114703 (2009).

[CrossRef]
[PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).

[CrossRef]
[PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).

[CrossRef]
[PubMed]

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values ofε and μ, ” Sov. Phys. Uspekhi10, 509–514 (1968).

[CrossRef]

R. E. Collin, Field Theory of Guided Waves (Wiley-IEEE Press, 1990).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

K. Price, R. Storn, and J. Lampinen, Differential Evolution - A Practical Approach to Global Optimization (Springer, 2005).

K. Price and R. Storn, “Differential evaluation (DE) for continuous function optimization,” http://www.icsi.berkeley.edu/~storn/code.html .

The MathWorks, http://www.mathworks.com .

J. Baker–Jarvis, M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, “Transmission/reflection and short–circuit line methods for measuring permittivity and permeability,” NIST, Boulder, CO, Tech. Note 1355, (1992).

G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists: A Comprehensive Guide (Academic Press, 2005).

E. Kreyszig, Advanced Engineering Mathematics (Wiley, 2006).

H. J. Pain, The Physics of Vibrations and Waves (Wiley, 2008).

C. Sabah, “Multiband metamaterials based on multiple concentric open ring resonators topology,” IEEE J. Sel. Topics Quantum Electron. 2012 (DOI#: 10.1109/JSTQE.2012.2193875).

[CrossRef]

D. M. Pozar, Microwave Engineering (Wiley, Hoboken, NJ, 2005).

C. Alexander and M. Sadiku, Fundamentals of Electric Circuits (McGraw-Hill, 2002).