Abstract

We report on the design and demonstration of electro-optically tunable, multi-wavelength optical parametric generators (OPGs) based on aperiodically poled lithium niobate (APPLN) crystals. Two methods have been proposed to significantly enhance the electro-optic (EO) tunability of an APPLN OPG constructed by the aperiodic optical superlattice (AOS) technique. This is done by engineering the APPLN domain structure either in the crystal fabrication or in the crystal design process to increase the length or block-number difference of the two opposite-polarity domains used in the structure. Several orders of magnitude enhancement on the EO tuning rate of the APPLN OPGs constructed by the proposed techniques for simultaneous multiple signal wavelength generation over a conventional one has been demonstrated in a near infrared band (1500-1600 nm).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Sasano and E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt.28(9), 1670–1679 (1989).
    [CrossRef] [PubMed]
  2. M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B96(1), 201–213 (2009).
    [CrossRef]
  3. K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett.25(23), 1714–1716 (2000).
    [CrossRef] [PubMed]
  4. J. Spigulis, L. Gailite, A. Lihachev, and R. Erts, “Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength photoplethysmography,” Appl. Opt.46(10), 1754–1759 (2007).
    [CrossRef] [PubMed]
  5. J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett.14(24), 973–976 (1965).
    [CrossRef]
  6. P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett.23(3), 159–161 (1998).
    [CrossRef] [PubMed]
  7. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett.21(8), 591–593 (1996).
    [CrossRef] [PubMed]
  8. M. D. Ewbank, M. J. Rosker, and G. L. Bennett, “Frequency tuning a mid-infrared optical parametric oscillator by the electro-optic effect,” J. Opt. Soc. Am. B14(3), 666–671 (1997).
    [CrossRef]
  9. C. L. Chang, Y. H. Chen, C. H. Lin, and J. Y. Chang, “Monolithically integrated multi-wavelength filter and second harmonic generator in aperiodically poled lithium niobate,” Opt. Express16(22), 18535–18544 (2008).
    [CrossRef] [PubMed]
  10. Y. H. Chen, W. K. Chang, N. Hsu, C. Y. Chen, and J. W. Chang, “Internal Q-switching and self-optical parametric oscillation in a two-dimensional periodically poled Nd:MgO:LiNbO3 laser,” Opt. Lett.37(14), 2814–2816 (2012).
    [CrossRef] [PubMed]
  11. Y. H. Chen, J. W. Chang, C. H. Lin, W. K. Chang, N. Hsu, Y. Y. Lai, Q. H. Tseng, R. Geiss, T. Pertsch, and S. S. Yang, “Spectral narrowing and manipulation in an optical parametric oscillator using periodically poled lithium niobate electro-optic polarization-mode converters,” Opt. Lett.36(12), 2345–2347 (2011).
    [CrossRef] [PubMed]
  12. Y. Q. Lu, J. J. Zheng, Y. L. Lu, N. B. Ming, and Z. Y. Xu, “Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect,” Appl. Phys. Lett.74(1), 123–125 (1999).
    [CrossRef]
  13. N. O’Brien, M. Missey, P. Powers, V. Dominic, and K. L. Schepler, “Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett.24(23), 1750–1752 (1999).
    [CrossRef] [PubMed]
  14. S. Helmfrid, K. Tatsuno, and K. Ito, “Theoretical study of a modulator for a waveguide second-harmonic generator,” J. Opt. Soc. Am. B10(3), 459–468 (1993).
    [CrossRef]
  15. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett.22(20), 1553–1555 (1997).
    [CrossRef] [PubMed]
  16. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure,” Opt. Lett.28(7), 558–560 (2003).
    [CrossRef] [PubMed]
  17. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278(5339), 843–846 (1997).
    [CrossRef]
  18. J. Y. Lai, Y. J. Liu, H. Y. Wu, Y. H. Chen, and S. D. Yang, “Engineered multiwavelength conversion using nonperiodic optical superlattice optimized by genetic algorithm,” Opt. Express18(5), 5328–5337 (2010).
    [CrossRef] [PubMed]
  19. B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett.75(15), 2175–2177 (1999).
    [CrossRef]
  20. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science220(4598), 671–680 (1983).
    [CrossRef] [PubMed]
  21. R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron.15(6), 432–444 (1979).
    [CrossRef]
  22. Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H. Chou, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate,” Opt. Lett.27(24), 2191–2193 (2002).
    [CrossRef] [PubMed]
  23. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064 -µm pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett.20(1), 52–54 (1995).
    [CrossRef] [PubMed]
  24. L. E. Myers, Quasi-Phasematched Optical Parametric Oscillators in Bulk Periodically Poled Lithium Niobate (Ph.D. Dissertation, Stanford University, 1995).
  25. M. Robles-Agudo and R. S. Cudney, “Multiple wavelength generation using aperiodically poled lithium niobate,” Appl. Phys. B103(1), 99–106 (2011).
    [CrossRef]
  26. C. H. Lin, Y. H. Chen, S. W. Lin, C. L. Chang, Y. C. Huang, and J. Y. Chang, “Electro-optic narrowband multi-wavelength filter in aperiodically poled lithium niobate,” Opt. Express15(15), 9859–9866 (2007).
    [CrossRef] [PubMed]
  27. Y. Y. Lin, Y. F. Chiang, Y. C. Huang, A. C. Chiang, S. T. Lin, and Y. H. Chen, “Light-enhanced electro-optic spectral tuning in annealed proton-exchanged periodically poled lithium niobate channel waveguides,” Opt. Lett.31(23), 3483–3485 (2006).
    [CrossRef] [PubMed]

2012 (1)

2011 (2)

2010 (1)

2009 (1)

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B96(1), 201–213 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (1)

2003 (1)

2002 (1)

2000 (1)

1999 (3)

Y. Q. Lu, J. J. Zheng, Y. L. Lu, N. B. Ming, and Z. Y. Xu, “Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect,” Appl. Phys. Lett.74(1), 123–125 (1999).
[CrossRef]

N. O’Brien, M. Missey, P. Powers, V. Dominic, and K. L. Schepler, “Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett.24(23), 1750–1752 (1999).
[CrossRef] [PubMed]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett.75(15), 2175–2177 (1999).
[CrossRef]

1998 (1)

1997 (3)

1996 (1)

1995 (1)

1993 (1)

1989 (1)

1983 (1)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science220(4598), 671–680 (1983).
[CrossRef] [PubMed]

1979 (1)

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron.15(6), 432–444 (1979).
[CrossRef]

1965 (1)

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett.14(24), 973–976 (1965).
[CrossRef]

Asobe, M.

Baumgartner, R. A.

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron.15(6), 432–444 (1979).
[CrossRef]

Bennett, G. L.

Bisson, S. E.

Bosenberg, W. R.

Browell, E. V.

Byer, R. L.

Chang, C. L.

Chang, J. W.

Chang, J. Y.

Chang, W. K.

Chen, C. Y.

Chen, Y. H.

Y. H. Chen, W. K. Chang, N. Hsu, C. Y. Chen, and J. W. Chang, “Internal Q-switching and self-optical parametric oscillation in a two-dimensional periodically poled Nd:MgO:LiNbO3 laser,” Opt. Lett.37(14), 2814–2816 (2012).
[CrossRef] [PubMed]

Y. H. Chen, J. W. Chang, C. H. Lin, W. K. Chang, N. Hsu, Y. Y. Lai, Q. H. Tseng, R. Geiss, T. Pertsch, and S. S. Yang, “Spectral narrowing and manipulation in an optical parametric oscillator using periodically poled lithium niobate electro-optic polarization-mode converters,” Opt. Lett.36(12), 2345–2347 (2011).
[CrossRef] [PubMed]

J. Y. Lai, Y. J. Liu, H. Y. Wu, Y. H. Chen, and S. D. Yang, “Engineered multiwavelength conversion using nonperiodic optical superlattice optimized by genetic algorithm,” Opt. Express18(5), 5328–5337 (2010).
[CrossRef] [PubMed]

C. L. Chang, Y. H. Chen, C. H. Lin, and J. Y. Chang, “Monolithically integrated multi-wavelength filter and second harmonic generator in aperiodically poled lithium niobate,” Opt. Express16(22), 18535–18544 (2008).
[CrossRef] [PubMed]

C. H. Lin, Y. H. Chen, S. W. Lin, C. L. Chang, Y. C. Huang, and J. Y. Chang, “Electro-optic narrowband multi-wavelength filter in aperiodically poled lithium niobate,” Opt. Express15(15), 9859–9866 (2007).
[CrossRef] [PubMed]

Y. Y. Lin, Y. F. Chiang, Y. C. Huang, A. C. Chiang, S. T. Lin, and Y. H. Chen, “Light-enhanced electro-optic spectral tuning in annealed proton-exchanged periodically poled lithium niobate channel waveguides,” Opt. Lett.31(23), 3483–3485 (2006).
[CrossRef] [PubMed]

Chiang, A. C.

Chiang, Y. F.

Chou, M. H.

Cudney, R. S.

M. Robles-Agudo and R. S. Cudney, “Multiple wavelength generation using aperiodically poled lithium niobate,” Appl. Phys. B103(1), 99–106 (2011).
[CrossRef]

Dominic, V.

Dong, B. Z.

Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H. Chou, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate,” Opt. Lett.27(24), 2191–2193 (2002).
[CrossRef] [PubMed]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett.75(15), 2175–2177 (1999).
[CrossRef]

Eckardt, R. C.

Ehret, G.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B96(1), 201–213 (2009).
[CrossRef]

Erts, R.

Ewbank, M. D.

Fan, F. C.

Fejer, M. M.

Fix, A.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B96(1), 201–213 (2009).
[CrossRef]

Gailite, L.

Geiss, R.

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Giordmaine, J. A.

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett.14(24), 973–976 (1965).
[CrossRef]

Gu, B. Y.

Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H. Chou, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate,” Opt. Lett.27(24), 2191–2193 (2002).
[CrossRef] [PubMed]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett.75(15), 2175–2177 (1999).
[CrossRef]

Hatanaka, T.

Helmfrid, S.

Hsu, N.

Huang, Y. C.

Ito, H.

Ito, K.

Jundt, D. H.

Kawase, K.

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Kulp, T. J.

Lai, J. Y.

Lai, Y. Y.

Lee, Y. W.

Lihachev, A.

Lin, C. H.

Lin, S. T.

Lin, S. W.

Lin, Y. Y.

Liu, Y. J.

Lu, Y. L.

Y. Q. Lu, J. J. Zheng, Y. L. Lu, N. B. Ming, and Z. Y. Xu, “Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect,” Appl. Phys. Lett.74(1), 123–125 (1999).
[CrossRef]

Lu, Y. Q.

Y. Q. Lu, J. J. Zheng, Y. L. Lu, N. B. Ming, and Z. Y. Xu, “Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect,” Appl. Phys. Lett.74(1), 123–125 (1999).
[CrossRef]

Mahnke, P.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B96(1), 201–213 (2009).
[CrossRef]

Miller, G. D.

Miller, R. C.

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett.14(24), 973–976 (1965).
[CrossRef]

Ming, N. B.

Y. Q. Lu, J. J. Zheng, Y. L. Lu, N. B. Ming, and Z. Y. Xu, “Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect,” Appl. Phys. Lett.74(1), 123–125 (1999).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278(5339), 843–846 (1997).
[CrossRef]

Missey, M.

Miyazawa, H.

Myers, L. E.

Nakamura, K.

Nishida, Y.

O’Brien, N.

Pertsch, T.

Powers, P.

Powers, P. E.

Robles-Agudo, M.

M. Robles-Agudo and R. S. Cudney, “Multiple wavelength generation using aperiodically poled lithium niobate,” Appl. Phys. B103(1), 99–106 (2011).
[CrossRef]

Rosker, M. J.

Sasano, Y.

Schepler, K. L.

Schrandt, F.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B96(1), 201–213 (2009).
[CrossRef]

Schwarzer, H.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B96(1), 201–213 (2009).
[CrossRef]

Spigulis, J.

Suzuki, H.

Tadanaga, O.

Takahashi, H.

Taniuchi, T.

Tatsuno, K.

Tseng, Q. H.

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Wirth, M.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B96(1), 201–213 (2009).
[CrossRef]

Wu, H. Y.

Xu, Z. Y.

Y. Q. Lu, J. J. Zheng, Y. L. Lu, N. B. Ming, and Z. Y. Xu, “Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect,” Appl. Phys. Lett.74(1), 123–125 (1999).
[CrossRef]

Yang, G. Z.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett.75(15), 2175–2177 (1999).
[CrossRef]

Yang, S. D.

Yang, S. S.

Zhang, Y.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett.75(15), 2175–2177 (1999).
[CrossRef]

Zheng, J. J.

Y. Q. Lu, J. J. Zheng, Y. L. Lu, N. B. Ming, and Z. Y. Xu, “Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect,” Appl. Phys. Lett.74(1), 123–125 (1999).
[CrossRef]

Zhu, S. N.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278(5339), 843–846 (1997).
[CrossRef]

Zhu, Y. Y.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278(5339), 843–846 (1997).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B96(1), 201–213 (2009).
[CrossRef]

M. Robles-Agudo and R. S. Cudney, “Multiple wavelength generation using aperiodically poled lithium niobate,” Appl. Phys. B103(1), 99–106 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Q. Lu, J. J. Zheng, Y. L. Lu, N. B. Ming, and Z. Y. Xu, “Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect,” Appl. Phys. Lett.74(1), 123–125 (1999).
[CrossRef]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett.75(15), 2175–2177 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron.15(6), 432–444 (1979).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (3)

Opt. Lett. (11)

Y. H. Chen, J. W. Chang, C. H. Lin, W. K. Chang, N. Hsu, Y. Y. Lai, Q. H. Tseng, R. Geiss, T. Pertsch, and S. S. Yang, “Spectral narrowing and manipulation in an optical parametric oscillator using periodically poled lithium niobate electro-optic polarization-mode converters,” Opt. Lett.36(12), 2345–2347 (2011).
[CrossRef] [PubMed]

Y. H. Chen, W. K. Chang, N. Hsu, C. Y. Chen, and J. W. Chang, “Internal Q-switching and self-optical parametric oscillation in a two-dimensional periodically poled Nd:MgO:LiNbO3 laser,” Opt. Lett.37(14), 2814–2816 (2012).
[CrossRef] [PubMed]

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064 -µm pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett.20(1), 52–54 (1995).
[CrossRef] [PubMed]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett.22(20), 1553–1555 (1997).
[CrossRef] [PubMed]

P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett.23(3), 159–161 (1998).
[CrossRef] [PubMed]

N. O’Brien, M. Missey, P. Powers, V. Dominic, and K. L. Schepler, “Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett.24(23), 1750–1752 (1999).
[CrossRef] [PubMed]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett.21(8), 591–593 (1996).
[CrossRef] [PubMed]

K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett.25(23), 1714–1716 (2000).
[CrossRef] [PubMed]

Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H. Chou, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate,” Opt. Lett.27(24), 2191–2193 (2002).
[CrossRef] [PubMed]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure,” Opt. Lett.28(7), 558–560 (2003).
[CrossRef] [PubMed]

Y. Y. Lin, Y. F. Chiang, Y. C. Huang, A. C. Chiang, S. T. Lin, and Y. H. Chen, “Light-enhanced electro-optic spectral tuning in annealed proton-exchanged periodically poled lithium niobate channel waveguides,” Opt. Lett.31(23), 3483–3485 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett.14(24), 973–976 (1965).
[CrossRef]

Science (2)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science220(4598), 671–680 (1983).
[CrossRef] [PubMed]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278(5339), 843–846 (1997).
[CrossRef]

Other (1)

L. E. Myers, Quasi-Phasematched Optical Parametric Oscillators in Bulk Periodically Poled Lithium Niobate (Ph.D. Dissertation, Stanford University, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of an APPLN crystal constructed using the AOS technique, consisting of a sequence of N domain blocks with each a thickness of Δx. The coordinate xj defines the default domain structure (the original design), while x j defines a structure with domain over-poled by an amount of δx (gray areas) from each border of the default inverted areas (black areas).

Fig. 2
Fig. 2

Calculated output signal spectra of the APPLN OPGs designed by the AOS technique for (a) 2, (b) 3, and (c) 4 signal-wavelength generations at a pump intensity of 92 MW/cm2 at 40°C under the nondepleted pump approximation.

Fig. 3
Fig. 3

(a) Calculated signal spectra of a 3-signal-wavelength APPLN OPG designed by the ΔL enhancement method with ΔL/L = 0.4 at Ez = 0 and ± 4 kV/mm at 40°C. (b) Calculated EO spectral tuning curves of the signals from the ΔL-enhanced APPLN OPG. The signal tuning curves of the APPLN OPG in its original design (see Table 1) are also plotted for comparison.

Fig. 4
Fig. 4

(a) Calculated signal spectra of a 3-signal-wavelength APPLN OPG designed by the ΔN enhancement method with ΔN/N = 0.4 at Ez = 0 and ± 4 kV/mm at 40°C. (b) Calculated EO spectral tuning curves of the signals from the ΔN-enhanced APPLN OPG.

Fig. 5
Fig. 5

Fourier analysis of the QPM domain structures of the 3-signal-wavelength APPLN OPGs constructed by the two EO-tuning enhancement methods at Ez = 0 and ± 4 kV/mm at 40°C.

Fig. 6
Fig. 6

Calculated output spectra of the cascade PPLN OPG device with 30%/70% asymmetric domain duty cycle (corresponding to ΔL/L = 0.4) at Ez = 0 and ± 4 kV/mm at 40°C.

Fig. 7
Fig. 7

Measured signal spectra of the fabricated APPLN OPGs designed by the (a) ΔL and (b) ΔN enhancement methods for simultaneous two signal-wavelength generation at 140°C when operated at an external field of Ez = 0 and ± 4 kV/mm and pumped by a ~35-kW peak-power, Q-switched 1064-nm laser. The dashed lines represent the theoretical fit.

Tables (1)

Tables Icon

Table 1 Design Parameters and Domain Structure Analysis of Three APPLN OPGs Designed by the AOS Technique with the SA Optimization Method

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ k π E z ( r 33,p n p 3 λ p r 33,s n s 3 λ s r 33,i n i 3 λ i ) ( l + l ) Λ =Δ k +δk( E z )( D + D )= 2mπ Λ ,
Δϕ=(Δ k i K i )L+[δk( E z ) j=0 N1 s( x j ) Δx=δk( E z )( N + N )Δx=δk( E z )( L + L )]
Δ k APPLN ( E z )=Δϕ( E z )/L=(Δ k i K i )+δk( E z )( D a + D a )=0,
G m = 1 L | 0 L dxexp[ i( k p k s k i )x ] s(x) |= 1 N | sinc( 1 2 l c Δx)× j=0 N1 s( x j )exp[ i2π 1 2 l c (j+0.5)Δx ] |,
OF={ α=1 M [| η 0 ( λ α )η( λ α ) | ]w( λ α )}+β{max[η( λ 1 ),...,η( λ M )]min[η( λ 1 ),...,η( λ M )]},
I s ( λ α )= n s ( λ α ) | E s ( λ α ) | 2 2 Z 0 ,
OF={ α=1 M [| η 0 ( λ α )η( λ α ) | ]w( λ α )}+β{max[η( λ 1 ),...,η( λ M )]min[η( λ 1 ),...,η( λ M )]} +γ| Δ N 0 ΔN |,

Metrics