Abstract

Selective coupling a single pair of cores in a photonic crystal fiber with multiple, initially decoupled, cores is demonstrated through the use of a technique to locally post-process the fiber cross section. Coupling occurs when the hole between the selected core pair is collapsed over a short fiber section, which is accomplished by heating the section while the hole is submitted to an air pressure that is lower than that applied to all other holes in the microstructure. The demonstrated couplers present an estimated insertion loss of ~1 dB and exhibit spectral modulations with a depth of up to 18 dB and a high polarization sensitivity that can be exploited for polarization splitting or filtering in space-division-multiplexed optical interconnection and telecommunication links.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gauden, D. Mechin, C. Vaudry, P. Yvernault, and D. Pureur, “Variable optical attenuator based on thermally tuned Mach-Zehnder interferometer within a twin core fiber,” Opt. Commun.231(1-6), 213–216 (2004).
    [CrossRef]
  2. B. Kim, T.-H. Kim, L. Cui, and Y. Chung, “Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications,” Opt. Express17(18), 15502–15507 (2009).
    [CrossRef] [PubMed]
  3. A. Harhira, J. Lapointe, and R. Kashyap, “A Simple Bend Sensor Using a Twin Core Fiber Mach-Zehnder Interferometer,” in Latin America Optics and Photonics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper TuF3.
  4. A. Zhou, G. Li, Y. Zhang, Y. Wang, C. Guan, J. Yang, and L. Yuan, “Asymmetrical Twin-Core Fiber Based Michelson Interferometer for Refractive Index Sensing,” J. Lightwave Technol.29(19), 2985–2991 (2011).
    [CrossRef]
  5. L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, and B. G. Ward, “Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area,” Opt. Lett.33(1), 71–73 (2008).
    [CrossRef] [PubMed]
  6. X.-H. Fang, M.-L. Hu, B.-W. Liu, L. Chai, C.-Y. Wang, and A. M. Zheltikov, “Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber,” Opt. Lett.35(14), 2326–2328 (2010).
    [CrossRef] [PubMed]
  7. X.-H. Fang, M.-L. Hu, L.-L. Huang, L. Chai, N.-L. Dai, J.-Y. Li, A. Y. Tashchilina, A. M. Zheltikov, and C.-Y. Wang, “Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber,” Opt. Lett.37(12), 2292–2294 (2012).
    [CrossRef] [PubMed]
  8. D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-Doped Microstructured Multicore Fiber for Customizable Supercontinuum Generation,” IEEE Photon. J.3(6), 1149–1156 (2011).
    [CrossRef]
  9. K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express15(5), 2151–2165 (2007).
    [CrossRef] [PubMed]
  10. M. Hirano, “Future of Transmission Fiber,” IEEE Photon. J.3(2), 316–319 (2011).
    [CrossRef]
  11. B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett.22, 1647–1649 (2010).
  12. B. Zhu, J. M. Fini, M. F. Yan, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “High-Capacity Space-Division-Multiplexed DWDM Transmissions Using Multicore Fiber,” J. Lightwave Technol.30(4), 486–492 (2012).
    [CrossRef]
  13. B. G. Lee, D. M. Kuchta, F. E. Doany, C. L. Schow, P. Pepeljugoski, C. Baks, T. F. Taunay, B. Zhu, M. F. Yan, G. Oulundsen, D. S. Vaidya, W. Luo, and N. Li, “End-to-End Multicore Multimode Fiber Optic Link Operating up to 120 Gb/s,” J. Lightwave Technol.30(6), 886–892 (2012).
    [CrossRef]
  14. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express18(11), 11117–11122 (2010).
    [CrossRef] [PubMed]
  15. B. Rosinski, J. W. D. Chi, P. Grosso, and J. Le Bihan, “Multichannel transmission of a multicore fiber coupled with vertical-cavity surface-emitting lasers,” J. Lightwave Technol.17(5), 807–810 (1999).
    [CrossRef]
  16. D. M. Taylor, C. R. Bennett, T. J. Shepherd, L. F. Michaille, M. D. Nielsen, and H. R. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–331 (2006).
    [CrossRef]
  17. B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett.36(16), 1358–1359 (2000).
    [CrossRef]
  18. K. Mukasa, K. Imamura, M. Takahashi, and T. Yagi, “Development of novel fibers for telecoms application,” Opt. Fiber Technol.16(6), 367–377 (2010).
    [CrossRef]
  19. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express11(24), 3188–3195 (2003).
    [CrossRef] [PubMed]
  20. Y. Yan and J. Toulouse, “Nonlinear inter-core coupling in triple-core photonic crystal fibers,” Opt. Express17(22), 20272–20281 (2009).
    [CrossRef] [PubMed]
  21. F. Saitoh, K. Saitoh, and M. Koshiba, “A design method of a fiber-based mode multi/demultiplexer for mode-division multiplexing,” Opt. Express18(5), 4709–4716 (2010).
    [CrossRef] [PubMed]
  22. L. Yuan, Z. Liu, J. Yang, and C. Guan, “Bitapered fiber coupling characteristics between single-mode single-core fiber and single-mode multicore fiber,” Appl. Opt.47(18), 3307–3312 (2008).
    [CrossRef] [PubMed]
  23. A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, “All-fiber anamorphic core-shape transitions,” Opt. Lett.31(18), 2672–2674 (2006).
    [CrossRef] [PubMed]
  24. K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, and T. A. Birks, “Wavelength-independent all-fiber mode converters,” Opt. Lett.32(4), 328–330 (2007).
    [CrossRef] [PubMed]
  25. R. M. Gerosa, D. H. Spadoti, L. S. Menezes, and C. J. de Matos, “In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber,” Opt. Express19(4), 3124–3129 (2011).
    [CrossRef] [PubMed]
  26. R. M. Gerosa, C. R. Biazoli, C. M. B. Cordeiro, and C. J. S. de Matos, “Post-Processing Multicore Photonic Crystal Fibers for Locally Coupling Selected Core Pairs,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA39.
  27. R. M. Gerosa, D. H. Spadoti, C. J. S. de Matos, L. S. Menezes, and M. A. Franco, “Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber,” Opt. Express19(24), 24687–24698 (2011).
    [CrossRef] [PubMed]

2012 (3)

2011 (5)

2010 (5)

2009 (2)

2008 (2)

2007 (2)

2006 (2)

D. M. Taylor, C. R. Bennett, T. J. Shepherd, L. F. Michaille, M. D. Nielsen, and H. R. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–331 (2006).
[CrossRef]

A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, “All-fiber anamorphic core-shape transitions,” Opt. Lett.31(18), 2672–2674 (2006).
[CrossRef] [PubMed]

2004 (1)

D. Gauden, D. Mechin, C. Vaudry, P. Yvernault, and D. Pureur, “Variable optical attenuator based on thermally tuned Mach-Zehnder interferometer within a twin core fiber,” Opt. Commun.231(1-6), 213–216 (2004).
[CrossRef]

2003 (1)

2000 (1)

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

1999 (1)

Baks, C.

Bennett, C. R.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, and B. G. Ward, “Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area,” Opt. Lett.33(1), 71–73 (2008).
[CrossRef] [PubMed]

D. M. Taylor, C. R. Bennett, T. J. Shepherd, L. F. Michaille, M. D. Nielsen, and H. R. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–331 (2006).
[CrossRef]

Birks, T. A.

Chai, L.

Chandrasekhar, S.

Chi, J. W. D.

Chung, Y.

Couderc, V.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-Doped Microstructured Multicore Fiber for Customizable Supercontinuum Generation,” IEEE Photon. J.3(6), 1149–1156 (2011).
[CrossRef]

Cui, L.

Dai, N.-L.

De Angelis, C.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-Doped Microstructured Multicore Fiber for Customizable Supercontinuum Generation,” IEEE Photon. J.3(6), 1149–1156 (2011).
[CrossRef]

de Matos, C. J.

de Matos, C. J. S.

Dimarcello, F. V.

Doany, F. E.

Fang, X.-H.

Fini, J. M.

Fishteyn, M.

Franco, M. A.

Gauden, D.

D. Gauden, D. Mechin, C. Vaudry, P. Yvernault, and D. Pureur, “Variable optical attenuator based on thermally tuned Mach-Zehnder interferometer within a twin core fiber,” Opt. Commun.231(1-6), 213–216 (2004).
[CrossRef]

Gerosa, R. M.

Greenaway, A. H.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

Grosso, P.

Guan, C.

Hirano, M.

M. Hirano, “Future of Transmission Fiber,” IEEE Photon. J.3(2), 316–319 (2011).
[CrossRef]

Hu, M.-L.

Huang, L.-L.

Imamura, K.

K. Mukasa, K. Imamura, M. Takahashi, and T. Yagi, “Development of novel fibers for telecoms application,” Opt. Fiber Technol.16(6), 367–377 (2010).
[CrossRef]

Kim, B.

Kim, T.-H.

Knight, J. C.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

Koshiba, M.

Kuchta, D. M.

Lai, K.

Le Bihan, J.

Lee, B. G.

Leon-Saval, S. G.

Li, G.

Li, J.-Y.

Li, N.

Liu, B.-W.

Liu, X.

Liu, Z.

Luo, W.

Mangan, B. J.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

Manili, G.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-Doped Microstructured Multicore Fiber for Customizable Supercontinuum Generation,” IEEE Photon. J.3(6), 1149–1156 (2011).
[CrossRef]

Mechin, D.

D. Gauden, D. Mechin, C. Vaudry, P. Yvernault, and D. Pureur, “Variable optical attenuator based on thermally tuned Mach-Zehnder interferometer within a twin core fiber,” Opt. Commun.231(1-6), 213–216 (2004).
[CrossRef]

Menezes, L. S.

Michaille, L.

Michaille, L. F.

D. M. Taylor, C. R. Bennett, T. J. Shepherd, L. F. Michaille, M. D. Nielsen, and H. R. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–331 (2006).
[CrossRef]

Minoni, U.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-Doped Microstructured Multicore Fiber for Customizable Supercontinuum Generation,” IEEE Photon. J.3(6), 1149–1156 (2011).
[CrossRef]

Modotto, D.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-Doped Microstructured Multicore Fiber for Customizable Supercontinuum Generation,” IEEE Photon. J.3(6), 1149–1156 (2011).
[CrossRef]

Monberg, E. M.

Mukasa, K.

K. Mukasa, K. Imamura, M. Takahashi, and T. Yagi, “Development of novel fibers for telecoms application,” Opt. Fiber Technol.16(6), 367–377 (2010).
[CrossRef]

Nielsen, M. D.

D. M. Taylor, C. R. Bennett, T. J. Shepherd, L. F. Michaille, M. D. Nielsen, and H. R. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–331 (2006).
[CrossRef]

Oulundsen, G.

B. G. Lee, D. M. Kuchta, F. E. Doany, C. L. Schow, P. Pepeljugoski, C. Baks, T. F. Taunay, B. Zhu, M. F. Yan, G. Oulundsen, D. S. Vaidya, W. Luo, and N. Li, “End-to-End Multicore Multimode Fiber Optic Link Operating up to 120 Gb/s,” J. Lightwave Technol.30(6), 886–892 (2012).
[CrossRef]

B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett.22, 1647–1649 (2010).

Pepeljugoski, P.

Pureur, D.

D. Gauden, D. Mechin, C. Vaudry, P. Yvernault, and D. Pureur, “Variable optical attenuator based on thermally tuned Mach-Zehnder interferometer within a twin core fiber,” Opt. Commun.231(1-6), 213–216 (2004).
[CrossRef]

Reichenbach, K. L.

Rosinski, B.

Russell, P. St. J.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

Saitoh, F.

Saitoh, K.

Sato, Y.

Schow, C. L.

Shepherd, T. J.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, and B. G. Ward, “Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area,” Opt. Lett.33(1), 71–73 (2008).
[CrossRef] [PubMed]

D. M. Taylor, C. R. Bennett, T. J. Shepherd, L. F. Michaille, M. D. Nielsen, and H. R. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–331 (2006).
[CrossRef]

Simonsen, H. R.

D. M. Taylor, C. R. Bennett, T. J. Shepherd, L. F. Michaille, M. D. Nielsen, and H. R. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–331 (2006).
[CrossRef]

Spadoti, D. H.

Takahashi, M.

K. Mukasa, K. Imamura, M. Takahashi, and T. Yagi, “Development of novel fibers for telecoms application,” Opt. Fiber Technol.16(6), 367–377 (2010).
[CrossRef]

Tashchilina, A. Y.

Taunay, T. F.

Taylor, D. M.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, and B. G. Ward, “Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area,” Opt. Lett.33(1), 71–73 (2008).
[CrossRef] [PubMed]

D. M. Taylor, C. R. Bennett, T. J. Shepherd, L. F. Michaille, M. D. Nielsen, and H. R. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–331 (2006).
[CrossRef]

Tonello, A.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-Doped Microstructured Multicore Fiber for Customizable Supercontinuum Generation,” IEEE Photon. J.3(6), 1149–1156 (2011).
[CrossRef]

Toulouse, J.

Town, G.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-Doped Microstructured Multicore Fiber for Customizable Supercontinuum Generation,” IEEE Photon. J.3(6), 1149–1156 (2011).
[CrossRef]

Vaidya, D.

B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett.22, 1647–1649 (2010).

Vaidya, D. S.

Vaudry, C.

D. Gauden, D. Mechin, C. Vaudry, P. Yvernault, and D. Pureur, “Variable optical attenuator based on thermally tuned Mach-Zehnder interferometer within a twin core fiber,” Opt. Commun.231(1-6), 213–216 (2004).
[CrossRef]

Wabnitz, S.

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-Doped Microstructured Multicore Fiber for Customizable Supercontinuum Generation,” IEEE Photon. J.3(6), 1149–1156 (2011).
[CrossRef]

Wadsworth, W. J.

Wang, C.-Y.

Wang, Y.

Ward, B. G.

Witkowska, A.

Xu, C.

Yagi, T.

K. Mukasa, K. Imamura, M. Takahashi, and T. Yagi, “Development of novel fibers for telecoms application,” Opt. Fiber Technol.16(6), 367–377 (2010).
[CrossRef]

Yan, M. F.

Yan, Y.

Yang, J.

Yuan, L.

Yvernault, P.

D. Gauden, D. Mechin, C. Vaudry, P. Yvernault, and D. Pureur, “Variable optical attenuator based on thermally tuned Mach-Zehnder interferometer within a twin core fiber,” Opt. Commun.231(1-6), 213–216 (2004).
[CrossRef]

Zhang, Y.

Zheltikov, A. M.

Zhou, A.

Zhu, B.

Appl. Opt. (1)

Electron. Lett. (2)

D. M. Taylor, C. R. Bennett, T. J. Shepherd, L. F. Michaille, M. D. Nielsen, and H. R. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–331 (2006).
[CrossRef]

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, “Experimental study of dual-core photonic crystal fibre,” Electron. Lett.36(16), 1358–1359 (2000).
[CrossRef]

IEEE Photon. J. (2)

D. Modotto, G. Manili, U. Minoni, S. Wabnitz, C. De Angelis, G. Town, A. Tonello, and V. Couderc, “Ge-Doped Microstructured Multicore Fiber for Customizable Supercontinuum Generation,” IEEE Photon. J.3(6), 1149–1156 (2011).
[CrossRef]

M. Hirano, “Future of Transmission Fiber,” IEEE Photon. J.3(2), 316–319 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett.22, 1647–1649 (2010).

J. Lightwave Technol. (4)

Opt. Commun. (1)

D. Gauden, D. Mechin, C. Vaudry, P. Yvernault, and D. Pureur, “Variable optical attenuator based on thermally tuned Mach-Zehnder interferometer within a twin core fiber,” Opt. Commun.231(1-6), 213–216 (2004).
[CrossRef]

Opt. Express (8)

K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express11(24), 3188–3195 (2003).
[CrossRef] [PubMed]

B. Kim, T.-H. Kim, L. Cui, and Y. Chung, “Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications,” Opt. Express17(18), 15502–15507 (2009).
[CrossRef] [PubMed]

Y. Yan and J. Toulouse, “Nonlinear inter-core coupling in triple-core photonic crystal fibers,” Opt. Express17(22), 20272–20281 (2009).
[CrossRef] [PubMed]

F. Saitoh, K. Saitoh, and M. Koshiba, “A design method of a fiber-based mode multi/demultiplexer for mode-division multiplexing,” Opt. Express18(5), 4709–4716 (2010).
[CrossRef] [PubMed]

B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express18(11), 11117–11122 (2010).
[CrossRef] [PubMed]

R. M. Gerosa, D. H. Spadoti, L. S. Menezes, and C. J. de Matos, “In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber,” Opt. Express19(4), 3124–3129 (2011).
[CrossRef] [PubMed]

R. M. Gerosa, D. H. Spadoti, C. J. S. de Matos, L. S. Menezes, and M. A. Franco, “Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber,” Opt. Express19(24), 24687–24698 (2011).
[CrossRef] [PubMed]

K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express15(5), 2151–2165 (2007).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

K. Mukasa, K. Imamura, M. Takahashi, and T. Yagi, “Development of novel fibers for telecoms application,” Opt. Fiber Technol.16(6), 367–377 (2010).
[CrossRef]

Opt. Lett. (5)

Other (2)

R. M. Gerosa, C. R. Biazoli, C. M. B. Cordeiro, and C. J. S. de Matos, “Post-Processing Multicore Photonic Crystal Fibers for Locally Coupling Selected Core Pairs,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA39.

A. Harhira, J. Lapointe, and R. Kashyap, “A Simple Bend Sensor Using a Twin Core Fiber Mach-Zehnder Interferometer,” in Latin America Optics and Photonics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper TuF3.

Supplementary Material (1)

» Media 1: AVI (1346 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Setup used to post-process the PCF, to induce local coupling between a single core pair.

Fig. 2
Fig. 2

Cross sections of the three-core PCF before (a) and after (b) post-processing (images at the same scale; white bar: 10 μm). (c) Schematic drawing of a longitudinal section of the modified PCF.

Fig. 3
Fig. 3

Setup used to optically characterize the post-processed PCFs

Fig. 4
Fig. 4

2D (top) and 3D (bottom) color-coded contour traces of the spatial intensity distribution of light leaving the post-processed PCF, for three input coupling conditions. (a) Light coupled in all three cores; (b) light coupled into core 3; (c) light coupled into core 2.

Fig. 5
Fig. 5

Transmission spectra of core 1 (red) and core 2 (black) for two post-processed PCF samples. Curves normalized with respect to the spectra of core 3 (green).

Fig. 6
Fig. 6

Measured modulation period (black) and calculated modal refractive index difference (green) as functions of wavelength for one of the produced couplers.

Fig. 7
Fig. 7

Transmission of the coupled cores for varying input polarization angles. (a) Transmission spectra of one of the cores; (b) normalized transmission at 800 nm for the two coupled cores; (c) spatial intensity distribution at the PCF output at 800 nm (Media 1).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ= λ 2 Δ n eff L

Metrics