Abstract

Mn2+ doped and Ce3+-Mn2+ co-doped α-Sr2P2O7 phosphors were prepared by a traditional high-temperature solid-state reaction route. The UV-vis excitation and emission spectra for all samples were investigated. Luminescence of Mn2+ is assigned to from two different sites, which is similar to that of Ce3+. Energy transfer from Ce3+ to Mn2+ in co-doped phosphors α-Sr2P2O7: 0.03Ce3+, xMn2+ and α-Sr2P2O7: xCe3+, 0.1Mn2+ was investigated by the excitation and emission spectra as well as the luminescence decays. Both Ce3+(1) and Ce3+(2) can transfer energy to two types of Mn2+ ions.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. J. Wang, D. D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
    [CrossRef]
  2. W. D. Wang, F. Q. Huang, Y. J. Xia, and A. B. Wang, “Photophysical and photoluminescence properties of co-activated ZnS: Cu, Mn phosphors,” J. Lumin.128(4), 610–614 (2008).
    [CrossRef]
  3. S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys.101, 063545 (2007).
    [CrossRef]
  4. Y. Shuanglong, C. Xianlin, Z. Chaofeng, Y. Yunxia, and C. Guorong, “Eu2+, Mn2+ Co-doped (Sr, Ba)6BP5O20 - a novel phosphor for white-LED,” Opt. Mater.30(1), 192–194 (2007).
    [CrossRef]
  5. Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09: Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
    [CrossRef]
  6. S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ concentration manipulated red emission in BaMg2Si2O7: Eu2+, Mn2+,” J. Appl. Phys.101, 033513 (2007).
    [CrossRef]
  7. Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “Luminescence and energy transfer of Mn2+ and Tb3+ in Y3Al5O12 phosphors,” J. Alloy. Comp.509(22), 6476–6480 (2011).
    [CrossRef]
  8. W. Liang and Y. H. Wang, “Energy transfer between Pr3+ and Mn2+ in K2YZr(PO4)3: Pr, Mn phosphor,” Mater. Chem. Phys.127(1-2), 170–173 (2011).
    [CrossRef]
  9. I. G. Valais, I. S. Kandarakis, D. N. Nikolopoulos, C. M. Michail, S. L. David, G. K. Loudos, D. A. Cavouras, and G. S. Panayiotakis, “Luminescence properties of (Lu; Y)2SiO5: Ce and Gd2SiO5: Ce single crystal scintillators under x-ray excitation for use in medical imaging systems,” IEEE Trans. Nucl. Sci.54(1), 11–18 (2007).
    [CrossRef]
  10. P. D. Rack, J. D. Peak, C. L. Melcher, and J. M. Fitz-Gerald, “Scanning electron and cathodoluminescence imaging of thin film Lu2SiO5: Ce scintillating materials,” Appl. Phys. Lett.91(24), 244102 (2007).
    [CrossRef]
  11. H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12: Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
    [CrossRef]
  12. V. A. Bolchouchine, E. T. Goldburt, B. N. Levonovitch, V. N. Litchmanova, and N. P. Sochtine, “Designed, highly-efficient FED phosphors and screens,” J. Lumin.87–89, 1277–1279 (2000).
    [CrossRef]
  13. H. He, R. L. Fu, Y. G. Cao, X. F. Song, Z. W. Pan, X. R. Zhao, Q. B. Xiao, and R. Li, “Ce3+-Eu2+ energy transfer mechanism in the Li2SrSiO4: Eu2+, Ce3+ phosphor,” Opt. Mater.32(5), 632–636 (2010).
    [CrossRef]
  14. L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
    [CrossRef]
  15. V. Pankratov, A. I. Popov, L. Shirmane, A. Kotlov, and C. Feldmann, “LaPO4: Ce, Tb and YVO4: Eu nanophosphors: luminescence studies in the vacuum ultraviolet spectral range,” J. Appl. Phys.110(5), 053522 (2011).
    [CrossRef]
  16. R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7: Eu2+, Y3+,” J. Phys. Chem. Solids70(2), 303–306 (2009).
    [CrossRef]
  17. S. Ye, Z. S. Liu, J. G. Wang, and X. P. Jing, “Luminescent properties of Sr2P2O7: Eu, Mn phosphor under near UV excitation,” Mater. Res. Bull.43(5), 1057–1065 (2008).
    [CrossRef]
  18. D. J. Hou, B. Han, W. P. Chen, H. B. Liang, Q. Su, P. Dorenbos, Y. Huang, Z. H. Gao, and Y. Tao, “Luminescence of Ce3+ at two different sites in α-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation,” J. Appl. Phys.108(8), 083527 (2010).
    [CrossRef]
  19. A. A. Coelho, TOPAS ACADEMIC, version 4, Brisbane, Australia, 2005.
  20. L. Hagman, I. Jansson, C. Magneli, O. Tolboe, and J. Paasivirta, “The crystal structure of α-Sr2P2O7,” Acta Chem. Scand.22, 1419–1429 (1968).
    [CrossRef]
  21. J. Barbier and J. P. Echard, “A new refinement of α-Sr2P2O7,” Acta Crystallogr. C54(12), IUC9800070 (1998).
    [CrossRef]
  22. C. M. Zhang, S. S. Huang, D. M. Yang, X. J. Kang, M. M. Shang, C. Peng, and J. Lin, “Tunable luminescence in Ce3+, Mn2+-codoped calcium fluorapatite through combining emissions and modulation of excitation: a novel strategy to white light emission,” J. Mater. Chem.20(32), 6674–6680 (2010).
    [CrossRef]
  23. G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
    [CrossRef]
  24. G. G. Li, D. L. Geng, M. M. Shang, Y. Zhang, C. Peng, Z. Y. Cheng, and J. Lin, “Color tuning luminescence of Ce3+/Mn2+/Tb3+-triactivated Mg2Y8(SiO4)6O2 via energy transfer: potential single-phase white-light-emitting phosphors,” J. Phys. Chem. C115(44), 21882–21892 (2011).
    [CrossRef]

2011 (5)

Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “Luminescence and energy transfer of Mn2+ and Tb3+ in Y3Al5O12 phosphors,” J. Alloy. Comp.509(22), 6476–6480 (2011).
[CrossRef]

W. Liang and Y. H. Wang, “Energy transfer between Pr3+ and Mn2+ in K2YZr(PO4)3: Pr, Mn phosphor,” Mater. Chem. Phys.127(1-2), 170–173 (2011).
[CrossRef]

V. Pankratov, A. I. Popov, L. Shirmane, A. Kotlov, and C. Feldmann, “LaPO4: Ce, Tb and YVO4: Eu nanophosphors: luminescence studies in the vacuum ultraviolet spectral range,” J. Appl. Phys.110(5), 053522 (2011).
[CrossRef]

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

G. G. Li, D. L. Geng, M. M. Shang, Y. Zhang, C. Peng, Z. Y. Cheng, and J. Lin, “Color tuning luminescence of Ce3+/Mn2+/Tb3+-triactivated Mg2Y8(SiO4)6O2 via energy transfer: potential single-phase white-light-emitting phosphors,” J. Phys. Chem. C115(44), 21882–21892 (2011).
[CrossRef]

2010 (4)

C. M. Zhang, S. S. Huang, D. M. Yang, X. J. Kang, M. M. Shang, C. Peng, and J. Lin, “Tunable luminescence in Ce3+, Mn2+-codoped calcium fluorapatite through combining emissions and modulation of excitation: a novel strategy to white light emission,” J. Mater. Chem.20(32), 6674–6680 (2010).
[CrossRef]

D. J. Hou, B. Han, W. P. Chen, H. B. Liang, Q. Su, P. Dorenbos, Y. Huang, Z. H. Gao, and Y. Tao, “Luminescence of Ce3+ at two different sites in α-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation,” J. Appl. Phys.108(8), 083527 (2010).
[CrossRef]

H. He, R. L. Fu, Y. G. Cao, X. F. Song, Z. W. Pan, X. R. Zhao, Q. B. Xiao, and R. Li, “Ce3+-Eu2+ energy transfer mechanism in the Li2SrSiO4: Eu2+, Ce3+ phosphor,” Opt. Mater.32(5), 632–636 (2010).
[CrossRef]

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

2009 (1)

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7: Eu2+, Y3+,” J. Phys. Chem. Solids70(2), 303–306 (2009).
[CrossRef]

2008 (2)

S. Ye, Z. S. Liu, J. G. Wang, and X. P. Jing, “Luminescent properties of Sr2P2O7: Eu, Mn phosphor under near UV excitation,” Mater. Res. Bull.43(5), 1057–1065 (2008).
[CrossRef]

W. D. Wang, F. Q. Huang, Y. J. Xia, and A. B. Wang, “Photophysical and photoluminescence properties of co-activated ZnS: Cu, Mn phosphors,” J. Lumin.128(4), 610–614 (2008).
[CrossRef]

2007 (6)

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys.101, 063545 (2007).
[CrossRef]

Y. Shuanglong, C. Xianlin, Z. Chaofeng, Y. Yunxia, and C. Guorong, “Eu2+, Mn2+ Co-doped (Sr, Ba)6BP5O20 - a novel phosphor for white-LED,” Opt. Mater.30(1), 192–194 (2007).
[CrossRef]

I. G. Valais, I. S. Kandarakis, D. N. Nikolopoulos, C. M. Michail, S. L. David, G. K. Loudos, D. A. Cavouras, and G. S. Panayiotakis, “Luminescence properties of (Lu; Y)2SiO5: Ce and Gd2SiO5: Ce single crystal scintillators under x-ray excitation for use in medical imaging systems,” IEEE Trans. Nucl. Sci.54(1), 11–18 (2007).
[CrossRef]

P. D. Rack, J. D. Peak, C. L. Melcher, and J. M. Fitz-Gerald, “Scanning electron and cathodoluminescence imaging of thin film Lu2SiO5: Ce scintillating materials,” Appl. Phys. Lett.91(24), 244102 (2007).
[CrossRef]

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12: Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ concentration manipulated red emission in BaMg2Si2O7: Eu2+, Mn2+,” J. Appl. Phys.101, 033513 (2007).
[CrossRef]

2006 (1)

Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09: Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
[CrossRef]

2003 (1)

X. J. Wang, D. D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
[CrossRef]

2000 (1)

V. A. Bolchouchine, E. T. Goldburt, B. N. Levonovitch, V. N. Litchmanova, and N. P. Sochtine, “Designed, highly-efficient FED phosphors and screens,” J. Lumin.87–89, 1277–1279 (2000).
[CrossRef]

1998 (1)

J. Barbier and J. P. Echard, “A new refinement of α-Sr2P2O7,” Acta Crystallogr. C54(12), IUC9800070 (1998).
[CrossRef]

1968 (1)

L. Hagman, I. Jansson, C. Magneli, O. Tolboe, and J. Paasivirta, “The crystal structure of α-Sr2P2O7,” Acta Chem. Scand.22, 1419–1429 (1968).
[CrossRef]

Barbier, J.

J. Barbier and J. P. Echard, “A new refinement of α-Sr2P2O7,” Acta Crystallogr. C54(12), IUC9800070 (1998).
[CrossRef]

Bolchouchine, V. A.

V. A. Bolchouchine, E. T. Goldburt, B. N. Levonovitch, V. N. Litchmanova, and N. P. Sochtine, “Designed, highly-efficient FED phosphors and screens,” J. Lumin.87–89, 1277–1279 (2000).
[CrossRef]

Cao, Y. G.

H. He, R. L. Fu, Y. G. Cao, X. F. Song, Z. W. Pan, X. R. Zhao, Q. B. Xiao, and R. Li, “Ce3+-Eu2+ energy transfer mechanism in the Li2SrSiO4: Eu2+, Ce3+ phosphor,” Opt. Mater.32(5), 632–636 (2010).
[CrossRef]

Cavouras, D. A.

I. G. Valais, I. S. Kandarakis, D. N. Nikolopoulos, C. M. Michail, S. L. David, G. K. Loudos, D. A. Cavouras, and G. S. Panayiotakis, “Luminescence properties of (Lu; Y)2SiO5: Ce and Gd2SiO5: Ce single crystal scintillators under x-ray excitation for use in medical imaging systems,” IEEE Trans. Nucl. Sci.54(1), 11–18 (2007).
[CrossRef]

Chaofeng, Z.

Y. Shuanglong, C. Xianlin, Z. Chaofeng, Y. Yunxia, and C. Guorong, “Eu2+, Mn2+ Co-doped (Sr, Ba)6BP5O20 - a novel phosphor for white-LED,” Opt. Mater.30(1), 192–194 (2007).
[CrossRef]

Chen, W. P.

D. J. Hou, B. Han, W. P. Chen, H. B. Liang, Q. Su, P. Dorenbos, Y. Huang, Z. H. Gao, and Y. Tao, “Luminescence of Ce3+ at two different sites in α-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation,” J. Appl. Phys.108(8), 083527 (2010).
[CrossRef]

Cheng, Z. Y.

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

G. G. Li, D. L. Geng, M. M. Shang, Y. Zhang, C. Peng, Z. Y. Cheng, and J. Lin, “Color tuning luminescence of Ce3+/Mn2+/Tb3+-triactivated Mg2Y8(SiO4)6O2 via energy transfer: potential single-phase white-light-emitting phosphors,” J. Phys. Chem. C115(44), 21882–21892 (2011).
[CrossRef]

David, S. L.

I. G. Valais, I. S. Kandarakis, D. N. Nikolopoulos, C. M. Michail, S. L. David, G. K. Loudos, D. A. Cavouras, and G. S. Panayiotakis, “Luminescence properties of (Lu; Y)2SiO5: Ce and Gd2SiO5: Ce single crystal scintillators under x-ray excitation for use in medical imaging systems,” IEEE Trans. Nucl. Sci.54(1), 11–18 (2007).
[CrossRef]

Dorenbos, P.

D. J. Hou, B. Han, W. P. Chen, H. B. Liang, Q. Su, P. Dorenbos, Y. Huang, Z. H. Gao, and Y. Tao, “Luminescence of Ce3+ at two different sites in α-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation,” J. Appl. Phys.108(8), 083527 (2010).
[CrossRef]

Echard, J. P.

J. Barbier and J. P. Echard, “A new refinement of α-Sr2P2O7,” Acta Crystallogr. C54(12), IUC9800070 (1998).
[CrossRef]

Feldmann, C.

V. Pankratov, A. I. Popov, L. Shirmane, A. Kotlov, and C. Feldmann, “LaPO4: Ce, Tb and YVO4: Eu nanophosphors: luminescence studies in the vacuum ultraviolet spectral range,” J. Appl. Phys.110(5), 053522 (2011).
[CrossRef]

Fitz-Gerald, J. M.

P. D. Rack, J. D. Peak, C. L. Melcher, and J. M. Fitz-Gerald, “Scanning electron and cathodoluminescence imaging of thin film Lu2SiO5: Ce scintillating materials,” Appl. Phys. Lett.91(24), 244102 (2007).
[CrossRef]

Fu, C. J.

Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “Luminescence and energy transfer of Mn2+ and Tb3+ in Y3Al5O12 phosphors,” J. Alloy. Comp.509(22), 6476–6480 (2011).
[CrossRef]

Fu, R. L.

H. He, R. L. Fu, Y. G. Cao, X. F. Song, Z. W. Pan, X. R. Zhao, Q. B. Xiao, and R. Li, “Ce3+-Eu2+ energy transfer mechanism in the Li2SrSiO4: Eu2+, Ce3+ phosphor,” Opt. Mater.32(5), 632–636 (2010).
[CrossRef]

Gao, Z. H.

D. J. Hou, B. Han, W. P. Chen, H. B. Liang, Q. Su, P. Dorenbos, Y. Huang, Z. H. Gao, and Y. Tao, “Luminescence of Ce3+ at two different sites in α-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation,” J. Appl. Phys.108(8), 083527 (2010).
[CrossRef]

Geng, D. L.

G. G. Li, D. L. Geng, M. M. Shang, Y. Zhang, C. Peng, Z. Y. Cheng, and J. Lin, “Color tuning luminescence of Ce3+/Mn2+/Tb3+-triactivated Mg2Y8(SiO4)6O2 via energy transfer: potential single-phase white-light-emitting phosphors,” J. Phys. Chem. C115(44), 21882–21892 (2011).
[CrossRef]

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

Goldburt, E. T.

V. A. Bolchouchine, E. T. Goldburt, B. N. Levonovitch, V. N. Litchmanova, and N. P. Sochtine, “Designed, highly-efficient FED phosphors and screens,” J. Lumin.87–89, 1277–1279 (2000).
[CrossRef]

Guorong, C.

Y. Shuanglong, C. Xianlin, Z. Chaofeng, Y. Yunxia, and C. Guorong, “Eu2+, Mn2+ Co-doped (Sr, Ba)6BP5O20 - a novel phosphor for white-LED,” Opt. Mater.30(1), 192–194 (2007).
[CrossRef]

Hagman, L.

L. Hagman, I. Jansson, C. Magneli, O. Tolboe, and J. Paasivirta, “The crystal structure of α-Sr2P2O7,” Acta Chem. Scand.22, 1419–1429 (1968).
[CrossRef]

Han, B.

D. J. Hou, B. Han, W. P. Chen, H. B. Liang, Q. Su, P. Dorenbos, Y. Huang, Z. H. Gao, and Y. Tao, “Luminescence of Ce3+ at two different sites in α-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation,” J. Appl. Phys.108(8), 083527 (2010).
[CrossRef]

Hao, Z. D.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

He, H.

H. He, R. L. Fu, Y. G. Cao, X. F. Song, Z. W. Pan, X. R. Zhao, Q. B. Xiao, and R. Li, “Ce3+-Eu2+ energy transfer mechanism in the Li2SrSiO4: Eu2+, Ce3+ phosphor,” Opt. Mater.32(5), 632–636 (2010).
[CrossRef]

Hou, D. J.

D. J. Hou, B. Han, W. P. Chen, H. B. Liang, Q. Su, P. Dorenbos, Y. Huang, Z. H. Gao, and Y. Tao, “Luminescence of Ce3+ at two different sites in α-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation,” J. Appl. Phys.108(8), 083527 (2010).
[CrossRef]

Hu, Y. H.

Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “Luminescence and energy transfer of Mn2+ and Tb3+ in Y3Al5O12 phosphors,” J. Alloy. Comp.509(22), 6476–6480 (2011).
[CrossRef]

Huang, F. Q.

W. D. Wang, F. Q. Huang, Y. J. Xia, and A. B. Wang, “Photophysical and photoluminescence properties of co-activated ZnS: Cu, Mn phosphors,” J. Lumin.128(4), 610–614 (2008).
[CrossRef]

Huang, S. S.

C. M. Zhang, S. S. Huang, D. M. Yang, X. J. Kang, M. M. Shang, C. Peng, and J. Lin, “Tunable luminescence in Ce3+, Mn2+-codoped calcium fluorapatite through combining emissions and modulation of excitation: a novel strategy to white light emission,” J. Mater. Chem.20(32), 6674–6680 (2010).
[CrossRef]

Huang, Y.

D. J. Hou, B. Han, W. P. Chen, H. B. Liang, Q. Su, P. Dorenbos, Y. Huang, Z. H. Gao, and Y. Tao, “Luminescence of Ce3+ at two different sites in α-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation,” J. Appl. Phys.108(8), 083527 (2010).
[CrossRef]

Im, W. B.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12: Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09: Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
[CrossRef]

Jang, H. S.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12: Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09: Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
[CrossRef]

Jansson, I.

L. Hagman, I. Jansson, C. Magneli, O. Tolboe, and J. Paasivirta, “The crystal structure of α-Sr2P2O7,” Acta Chem. Scand.22, 1419–1429 (1968).
[CrossRef]

Jeon, D. Y.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12: Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09: Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
[CrossRef]

Jia, D. D.

X. J. Wang, D. D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
[CrossRef]

Jing, X. P.

S. Ye, Z. S. Liu, J. G. Wang, and X. P. Jing, “Luminescent properties of Sr2P2O7: Eu, Mn phosphor under near UV excitation,” Mater. Res. Bull.43(5), 1057–1065 (2008).
[CrossRef]

Kandarakis, I. S.

I. G. Valais, I. S. Kandarakis, D. N. Nikolopoulos, C. M. Michail, S. L. David, G. K. Loudos, D. A. Cavouras, and G. S. Panayiotakis, “Luminescence properties of (Lu; Y)2SiO5: Ce and Gd2SiO5: Ce single crystal scintillators under x-ray excitation for use in medical imaging systems,” IEEE Trans. Nucl. Sci.54(1), 11–18 (2007).
[CrossRef]

Kang, F. W.

Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “Luminescence and energy transfer of Mn2+ and Tb3+ in Y3Al5O12 phosphors,” J. Alloy. Comp.509(22), 6476–6480 (2011).
[CrossRef]

Kang, X. J.

C. M. Zhang, S. S. Huang, D. M. Yang, X. J. Kang, M. M. Shang, C. Peng, and J. Lin, “Tunable luminescence in Ce3+, Mn2+-codoped calcium fluorapatite through combining emissions and modulation of excitation: a novel strategy to white light emission,” J. Mater. Chem.20(32), 6674–6680 (2010).
[CrossRef]

Kim, S. S.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12: Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

Kotlov, A.

V. Pankratov, A. I. Popov, L. Shirmane, A. Kotlov, and C. Feldmann, “LaPO4: Ce, Tb and YVO4: Eu nanophosphors: luminescence studies in the vacuum ultraviolet spectral range,” J. Appl. Phys.110(5), 053522 (2011).
[CrossRef]

Lee, D. C.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12: Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

Lee, J. S.

Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09: Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
[CrossRef]

Levonovitch, B. N.

V. A. Bolchouchine, E. T. Goldburt, B. N. Levonovitch, V. N. Litchmanova, and N. P. Sochtine, “Designed, highly-efficient FED phosphors and screens,” J. Lumin.87–89, 1277–1279 (2000).
[CrossRef]

Li, C. Y.

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7: Eu2+, Y3+,” J. Phys. Chem. Solids70(2), 303–306 (2009).
[CrossRef]

Li, G. G.

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

G. G. Li, D. L. Geng, M. M. Shang, Y. Zhang, C. Peng, Z. Y. Cheng, and J. Lin, “Color tuning luminescence of Ce3+/Mn2+/Tb3+-triactivated Mg2Y8(SiO4)6O2 via energy transfer: potential single-phase white-light-emitting phosphors,” J. Phys. Chem. C115(44), 21882–21892 (2011).
[CrossRef]

Li, R.

H. He, R. L. Fu, Y. G. Cao, X. F. Song, Z. W. Pan, X. R. Zhao, Q. B. Xiao, and R. Li, “Ce3+-Eu2+ energy transfer mechanism in the Li2SrSiO4: Eu2+, Ce3+ phosphor,” Opt. Mater.32(5), 632–636 (2010).
[CrossRef]

Liang, H. B.

D. J. Hou, B. Han, W. P. Chen, H. B. Liang, Q. Su, P. Dorenbos, Y. Huang, Z. H. Gao, and Y. Tao, “Luminescence of Ce3+ at two different sites in α-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation,” J. Appl. Phys.108(8), 083527 (2010).
[CrossRef]

Liang, W.

W. Liang and Y. H. Wang, “Energy transfer between Pr3+ and Mn2+ in K2YZr(PO4)3: Pr, Mn phosphor,” Mater. Chem. Phys.127(1-2), 170–173 (2011).
[CrossRef]

Lin, J.

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

G. G. Li, D. L. Geng, M. M. Shang, Y. Zhang, C. Peng, Z. Y. Cheng, and J. Lin, “Color tuning luminescence of Ce3+/Mn2+/Tb3+-triactivated Mg2Y8(SiO4)6O2 via energy transfer: potential single-phase white-light-emitting phosphors,” J. Phys. Chem. C115(44), 21882–21892 (2011).
[CrossRef]

C. M. Zhang, S. S. Huang, D. M. Yang, X. J. Kang, M. M. Shang, C. Peng, and J. Lin, “Tunable luminescence in Ce3+, Mn2+-codoped calcium fluorapatite through combining emissions and modulation of excitation: a novel strategy to white light emission,” J. Mater. Chem.20(32), 6674–6680 (2010).
[CrossRef]

Litchmanova, V. N.

V. A. Bolchouchine, E. T. Goldburt, B. N. Levonovitch, V. N. Litchmanova, and N. P. Sochtine, “Designed, highly-efficient FED phosphors and screens,” J. Lumin.87–89, 1277–1279 (2000).
[CrossRef]

Liu, Z. S.

S. Ye, Z. S. Liu, J. G. Wang, and X. P. Jing, “Luminescent properties of Sr2P2O7: Eu, Mn phosphor under near UV excitation,” Mater. Res. Bull.43(5), 1057–1065 (2008).
[CrossRef]

Loudos, G. K.

I. G. Valais, I. S. Kandarakis, D. N. Nikolopoulos, C. M. Michail, S. L. David, G. K. Loudos, D. A. Cavouras, and G. S. Panayiotakis, “Luminescence properties of (Lu; Y)2SiO5: Ce and Gd2SiO5: Ce single crystal scintillators under x-ray excitation for use in medical imaging systems,” IEEE Trans. Nucl. Sci.54(1), 11–18 (2007).
[CrossRef]

Lu, S. Z.

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ concentration manipulated red emission in BaMg2Si2O7: Eu2+, Mn2+,” J. Appl. Phys.101, 033513 (2007).
[CrossRef]

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys.101, 063545 (2007).
[CrossRef]

Luo, Y. S.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

Magneli, C.

L. Hagman, I. Jansson, C. Magneli, O. Tolboe, and J. Paasivirta, “The crystal structure of α-Sr2P2O7,” Acta Chem. Scand.22, 1419–1429 (1968).
[CrossRef]

Melcher, C. L.

P. D. Rack, J. D. Peak, C. L. Melcher, and J. M. Fitz-Gerald, “Scanning electron and cathodoluminescence imaging of thin film Lu2SiO5: Ce scintillating materials,” Appl. Phys. Lett.91(24), 244102 (2007).
[CrossRef]

Michail, C. M.

I. G. Valais, I. S. Kandarakis, D. N. Nikolopoulos, C. M. Michail, S. L. David, G. K. Loudos, D. A. Cavouras, and G. S. Panayiotakis, “Luminescence properties of (Lu; Y)2SiO5: Ce and Gd2SiO5: Ce single crystal scintillators under x-ray excitation for use in medical imaging systems,” IEEE Trans. Nucl. Sci.54(1), 11–18 (2007).
[CrossRef]

Mu, Z. F.

Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “Luminescence and energy transfer of Mn2+ and Tb3+ in Y3Al5O12 phosphors,” J. Alloy. Comp.509(22), 6476–6480 (2011).
[CrossRef]

Nikolopoulos, D. N.

I. G. Valais, I. S. Kandarakis, D. N. Nikolopoulos, C. M. Michail, S. L. David, G. K. Loudos, D. A. Cavouras, and G. S. Panayiotakis, “Luminescence properties of (Lu; Y)2SiO5: Ce and Gd2SiO5: Ce single crystal scintillators under x-ray excitation for use in medical imaging systems,” IEEE Trans. Nucl. Sci.54(1), 11–18 (2007).
[CrossRef]

Paasivirta, J.

L. Hagman, I. Jansson, C. Magneli, O. Tolboe, and J. Paasivirta, “The crystal structure of α-Sr2P2O7,” Acta Chem. Scand.22, 1419–1429 (1968).
[CrossRef]

Pan, Z. W.

H. He, R. L. Fu, Y. G. Cao, X. F. Song, Z. W. Pan, X. R. Zhao, Q. B. Xiao, and R. Li, “Ce3+-Eu2+ energy transfer mechanism in the Li2SrSiO4: Eu2+, Ce3+ phosphor,” Opt. Mater.32(5), 632–636 (2010).
[CrossRef]

Panayiotakis, G. S.

I. G. Valais, I. S. Kandarakis, D. N. Nikolopoulos, C. M. Michail, S. L. David, G. K. Loudos, D. A. Cavouras, and G. S. Panayiotakis, “Luminescence properties of (Lu; Y)2SiO5: Ce and Gd2SiO5: Ce single crystal scintillators under x-ray excitation for use in medical imaging systems,” IEEE Trans. Nucl. Sci.54(1), 11–18 (2007).
[CrossRef]

Pang, R.

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7: Eu2+, Y3+,” J. Phys. Chem. Solids70(2), 303–306 (2009).
[CrossRef]

Pankratov, V.

V. Pankratov, A. I. Popov, L. Shirmane, A. Kotlov, and C. Feldmann, “LaPO4: Ce, Tb and YVO4: Eu nanophosphors: luminescence studies in the vacuum ultraviolet spectral range,” J. Appl. Phys.110(5), 053522 (2011).
[CrossRef]

Peak, J. D.

P. D. Rack, J. D. Peak, C. L. Melcher, and J. M. Fitz-Gerald, “Scanning electron and cathodoluminescence imaging of thin film Lu2SiO5: Ce scintillating materials,” Appl. Phys. Lett.91(24), 244102 (2007).
[CrossRef]

Peng, C.

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

G. G. Li, D. L. Geng, M. M. Shang, Y. Zhang, C. Peng, Z. Y. Cheng, and J. Lin, “Color tuning luminescence of Ce3+/Mn2+/Tb3+-triactivated Mg2Y8(SiO4)6O2 via energy transfer: potential single-phase white-light-emitting phosphors,” J. Phys. Chem. C115(44), 21882–21892 (2011).
[CrossRef]

C. M. Zhang, S. S. Huang, D. M. Yang, X. J. Kang, M. M. Shang, C. Peng, and J. Lin, “Tunable luminescence in Ce3+, Mn2+-codoped calcium fluorapatite through combining emissions and modulation of excitation: a novel strategy to white light emission,” J. Mater. Chem.20(32), 6674–6680 (2010).
[CrossRef]

Popov, A. I.

V. Pankratov, A. I. Popov, L. Shirmane, A. Kotlov, and C. Feldmann, “LaPO4: Ce, Tb and YVO4: Eu nanophosphors: luminescence studies in the vacuum ultraviolet spectral range,” J. Appl. Phys.110(5), 053522 (2011).
[CrossRef]

Rack, P. D.

P. D. Rack, J. D. Peak, C. L. Melcher, and J. M. Fitz-Gerald, “Scanning electron and cathodoluminescence imaging of thin film Lu2SiO5: Ce scintillating materials,” Appl. Phys. Lett.91(24), 244102 (2007).
[CrossRef]

Ren, X. G.

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ concentration manipulated red emission in BaMg2Si2O7: Eu2+, Mn2+,” J. Appl. Phys.101, 033513 (2007).
[CrossRef]

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys.101, 063545 (2007).
[CrossRef]

Shang, M. M.

G. G. Li, D. L. Geng, M. M. Shang, Y. Zhang, C. Peng, Z. Y. Cheng, and J. Lin, “Color tuning luminescence of Ce3+/Mn2+/Tb3+-triactivated Mg2Y8(SiO4)6O2 via energy transfer: potential single-phase white-light-emitting phosphors,” J. Phys. Chem. C115(44), 21882–21892 (2011).
[CrossRef]

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

C. M. Zhang, S. S. Huang, D. M. Yang, X. J. Kang, M. M. Shang, C. Peng, and J. Lin, “Tunable luminescence in Ce3+, Mn2+-codoped calcium fluorapatite through combining emissions and modulation of excitation: a novel strategy to white light emission,” J. Mater. Chem.20(32), 6674–6680 (2010).
[CrossRef]

Shi, L. L.

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7: Eu2+, Y3+,” J. Phys. Chem. Solids70(2), 303–306 (2009).
[CrossRef]

Shirmane, L.

V. Pankratov, A. I. Popov, L. Shirmane, A. Kotlov, and C. Feldmann, “LaPO4: Ce, Tb and YVO4: Eu nanophosphors: luminescence studies in the vacuum ultraviolet spectral range,” J. Appl. Phys.110(5), 053522 (2011).
[CrossRef]

Shuanglong, Y.

Y. Shuanglong, C. Xianlin, Z. Chaofeng, Y. Yunxia, and C. Guorong, “Eu2+, Mn2+ Co-doped (Sr, Ba)6BP5O20 - a novel phosphor for white-LED,” Opt. Mater.30(1), 192–194 (2007).
[CrossRef]

Sochtine, N. P.

V. A. Bolchouchine, E. T. Goldburt, B. N. Levonovitch, V. N. Litchmanova, and N. P. Sochtine, “Designed, highly-efficient FED phosphors and screens,” J. Lumin.87–89, 1277–1279 (2000).
[CrossRef]

Song, X. F.

H. He, R. L. Fu, Y. G. Cao, X. F. Song, Z. W. Pan, X. R. Zhao, Q. B. Xiao, and R. Li, “Ce3+-Eu2+ energy transfer mechanism in the Li2SrSiO4: Eu2+, Ce3+ phosphor,” Opt. Mater.32(5), 632–636 (2010).
[CrossRef]

Su, Q.

D. J. Hou, B. Han, W. P. Chen, H. B. Liang, Q. Su, P. Dorenbos, Y. Huang, Z. H. Gao, and Y. Tao, “Luminescence of Ce3+ at two different sites in α-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation,” J. Appl. Phys.108(8), 083527 (2010).
[CrossRef]

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7: Eu2+, Y3+,” J. Phys. Chem. Solids70(2), 303–306 (2009).
[CrossRef]

Tao, Y.

D. J. Hou, B. Han, W. P. Chen, H. B. Liang, Q. Su, P. Dorenbos, Y. Huang, Z. H. Gao, and Y. Tao, “Luminescence of Ce3+ at two different sites in α-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation,” J. Appl. Phys.108(8), 083527 (2010).
[CrossRef]

Tolboe, O.

L. Hagman, I. Jansson, C. Magneli, O. Tolboe, and J. Paasivirta, “The crystal structure of α-Sr2P2O7,” Acta Chem. Scand.22, 1419–1429 (1968).
[CrossRef]

Valais, I. G.

I. G. Valais, I. S. Kandarakis, D. N. Nikolopoulos, C. M. Michail, S. L. David, G. K. Loudos, D. A. Cavouras, and G. S. Panayiotakis, “Luminescence properties of (Lu; Y)2SiO5: Ce and Gd2SiO5: Ce single crystal scintillators under x-ray excitation for use in medical imaging systems,” IEEE Trans. Nucl. Sci.54(1), 11–18 (2007).
[CrossRef]

Wang, A. B.

W. D. Wang, F. Q. Huang, Y. J. Xia, and A. B. Wang, “Photophysical and photoluminescence properties of co-activated ZnS: Cu, Mn phosphors,” J. Lumin.128(4), 610–614 (2008).
[CrossRef]

Wang, J. G.

S. Ye, Z. S. Liu, J. G. Wang, and X. P. Jing, “Luminescent properties of Sr2P2O7: Eu, Mn phosphor under near UV excitation,” Mater. Res. Bull.43(5), 1057–1065 (2008).
[CrossRef]

Wang, L.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

Wang, W. D.

W. D. Wang, F. Q. Huang, Y. J. Xia, and A. B. Wang, “Photophysical and photoluminescence properties of co-activated ZnS: Cu, Mn phosphors,” J. Lumin.128(4), 610–614 (2008).
[CrossRef]

Wang, X. J.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys.101, 063545 (2007).
[CrossRef]

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ concentration manipulated red emission in BaMg2Si2O7: Eu2+, Mn2+,” J. Appl. Phys.101, 033513 (2007).
[CrossRef]

X. J. Wang, D. D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
[CrossRef]

Wang, Y. H.

W. Liang and Y. H. Wang, “Energy transfer between Pr3+ and Mn2+ in K2YZr(PO4)3: Pr, Mn phosphor,” Mater. Chem. Phys.127(1-2), 170–173 (2011).
[CrossRef]

Won, Y. H.

Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09: Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
[CrossRef]

Wu, H. Y.

Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “Luminescence and energy transfer of Mn2+ and Tb3+ in Y3Al5O12 phosphors,” J. Alloy. Comp.509(22), 6476–6480 (2011).
[CrossRef]

Xia, Y. J.

W. D. Wang, F. Q. Huang, Y. J. Xia, and A. B. Wang, “Photophysical and photoluminescence properties of co-activated ZnS: Cu, Mn phosphors,” J. Lumin.128(4), 610–614 (2008).
[CrossRef]

Xianlin, C.

Y. Shuanglong, C. Xianlin, Z. Chaofeng, Y. Yunxia, and C. Guorong, “Eu2+, Mn2+ Co-doped (Sr, Ba)6BP5O20 - a novel phosphor for white-LED,” Opt. Mater.30(1), 192–194 (2007).
[CrossRef]

Xiao, Q. B.

H. He, R. L. Fu, Y. G. Cao, X. F. Song, Z. W. Pan, X. R. Zhao, Q. B. Xiao, and R. Li, “Ce3+-Eu2+ energy transfer mechanism in the Li2SrSiO4: Eu2+, Ce3+ phosphor,” Opt. Mater.32(5), 632–636 (2010).
[CrossRef]

Yang, D. M.

C. M. Zhang, S. S. Huang, D. M. Yang, X. J. Kang, M. M. Shang, C. Peng, and J. Lin, “Tunable luminescence in Ce3+, Mn2+-codoped calcium fluorapatite through combining emissions and modulation of excitation: a novel strategy to white light emission,” J. Mater. Chem.20(32), 6674–6680 (2010).
[CrossRef]

Ye, S.

S. Ye, Z. S. Liu, J. G. Wang, and X. P. Jing, “Luminescent properties of Sr2P2O7: Eu, Mn phosphor under near UV excitation,” Mater. Res. Bull.43(5), 1057–1065 (2008).
[CrossRef]

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys.101, 063545 (2007).
[CrossRef]

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ concentration manipulated red emission in BaMg2Si2O7: Eu2+, Mn2+,” J. Appl. Phys.101, 033513 (2007).
[CrossRef]

Yen, W. M.

X. J. Wang, D. D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
[CrossRef]

Yunxia, Y.

Y. Shuanglong, C. Xianlin, Z. Chaofeng, Y. Yunxia, and C. Guorong, “Eu2+, Mn2+ Co-doped (Sr, Ba)6BP5O20 - a novel phosphor for white-LED,” Opt. Mater.30(1), 192–194 (2007).
[CrossRef]

Zhang, C. M.

C. M. Zhang, S. S. Huang, D. M. Yang, X. J. Kang, M. M. Shang, C. Peng, and J. Lin, “Tunable luminescence in Ce3+, Mn2+-codoped calcium fluorapatite through combining emissions and modulation of excitation: a novel strategy to white light emission,” J. Mater. Chem.20(32), 6674–6680 (2010).
[CrossRef]

Zhang, J. H.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys.101, 063545 (2007).
[CrossRef]

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ concentration manipulated red emission in BaMg2Si2O7: Eu2+, Mn2+,” J. Appl. Phys.101, 033513 (2007).
[CrossRef]

Zhang, X.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ concentration manipulated red emission in BaMg2Si2O7: Eu2+, Mn2+,” J. Appl. Phys.101, 033513 (2007).
[CrossRef]

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys.101, 063545 (2007).
[CrossRef]

Zhang, Y.

G. G. Li, D. L. Geng, M. M. Shang, Y. Zhang, C. Peng, Z. Y. Cheng, and J. Lin, “Color tuning luminescence of Ce3+/Mn2+/Tb3+-triactivated Mg2Y8(SiO4)6O2 via energy transfer: potential single-phase white-light-emitting phosphors,” J. Phys. Chem. C115(44), 21882–21892 (2011).
[CrossRef]

Zhao, X. R.

H. He, R. L. Fu, Y. G. Cao, X. F. Song, Z. W. Pan, X. R. Zhao, Q. B. Xiao, and R. Li, “Ce3+-Eu2+ energy transfer mechanism in the Li2SrSiO4: Eu2+, Ce3+ phosphor,” Opt. Mater.32(5), 632–636 (2010).
[CrossRef]

Acta Chem. Scand. (1)

L. Hagman, I. Jansson, C. Magneli, O. Tolboe, and J. Paasivirta, “The crystal structure of α-Sr2P2O7,” Acta Chem. Scand.22, 1419–1429 (1968).
[CrossRef]

Acta Crystallogr. C (1)

J. Barbier and J. P. Echard, “A new refinement of α-Sr2P2O7,” Acta Crystallogr. C54(12), IUC9800070 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09: Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006).
[CrossRef]

P. D. Rack, J. D. Peak, C. L. Melcher, and J. M. Fitz-Gerald, “Scanning electron and cathodoluminescence imaging of thin film Lu2SiO5: Ce scintillating materials,” Appl. Phys. Lett.91(24), 244102 (2007).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

I. G. Valais, I. S. Kandarakis, D. N. Nikolopoulos, C. M. Michail, S. L. David, G. K. Loudos, D. A. Cavouras, and G. S. Panayiotakis, “Luminescence properties of (Lu; Y)2SiO5: Ce and Gd2SiO5: Ce single crystal scintillators under x-ray excitation for use in medical imaging systems,” IEEE Trans. Nucl. Sci.54(1), 11–18 (2007).
[CrossRef]

J. Alloy. Comp. (1)

Z. F. Mu, Y. H. Hu, H. Y. Wu, C. J. Fu, and F. W. Kang, “Luminescence and energy transfer of Mn2+ and Tb3+ in Y3Al5O12 phosphors,” J. Alloy. Comp.509(22), 6476–6480 (2011).
[CrossRef]

J. Appl. Phys. (5)

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ concentration manipulated red emission in BaMg2Si2O7: Eu2+, Mn2+,” J. Appl. Phys.101, 033513 (2007).
[CrossRef]

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys.101, 063545 (2007).
[CrossRef]

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12: Ce3+, Pr3+ phosphor,” J. Appl. Phys.108(9), 093515 (2010).
[CrossRef]

V. Pankratov, A. I. Popov, L. Shirmane, A. Kotlov, and C. Feldmann, “LaPO4: Ce, Tb and YVO4: Eu nanophosphors: luminescence studies in the vacuum ultraviolet spectral range,” J. Appl. Phys.110(5), 053522 (2011).
[CrossRef]

D. J. Hou, B. Han, W. P. Chen, H. B. Liang, Q. Su, P. Dorenbos, Y. Huang, Z. H. Gao, and Y. Tao, “Luminescence of Ce3+ at two different sites in α-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation,” J. Appl. Phys.108(8), 083527 (2010).
[CrossRef]

J. Lumin. (4)

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12: Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin.126(2), 371–377 (2007).
[CrossRef]

V. A. Bolchouchine, E. T. Goldburt, B. N. Levonovitch, V. N. Litchmanova, and N. P. Sochtine, “Designed, highly-efficient FED phosphors and screens,” J. Lumin.87–89, 1277–1279 (2000).
[CrossRef]

X. J. Wang, D. D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin.102–103, 34–37 (2003).
[CrossRef]

W. D. Wang, F. Q. Huang, Y. J. Xia, and A. B. Wang, “Photophysical and photoluminescence properties of co-activated ZnS: Cu, Mn phosphors,” J. Lumin.128(4), 610–614 (2008).
[CrossRef]

J. Mater. Chem. (2)

C. M. Zhang, S. S. Huang, D. M. Yang, X. J. Kang, M. M. Shang, C. Peng, and J. Lin, “Tunable luminescence in Ce3+, Mn2+-codoped calcium fluorapatite through combining emissions and modulation of excitation: a novel strategy to white light emission,” J. Mater. Chem.20(32), 6674–6680 (2010).
[CrossRef]

G. G. Li, D. L. Geng, M. M. Shang, C. Peng, Z. Y. Cheng, and J. Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors,” J. Mater. Chem.21(35), 13334–13344 (2011).
[CrossRef]

J. Phys. Chem. C (1)

G. G. Li, D. L. Geng, M. M. Shang, Y. Zhang, C. Peng, Z. Y. Cheng, and J. Lin, “Color tuning luminescence of Ce3+/Mn2+/Tb3+-triactivated Mg2Y8(SiO4)6O2 via energy transfer: potential single-phase white-light-emitting phosphors,” J. Phys. Chem. C115(44), 21882–21892 (2011).
[CrossRef]

J. Phys. Chem. Solids (1)

R. Pang, C. Y. Li, L. L. Shi, and Q. Su, “A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7: Eu2+, Y3+,” J. Phys. Chem. Solids70(2), 303–306 (2009).
[CrossRef]

Mater. Chem. Phys. (1)

W. Liang and Y. H. Wang, “Energy transfer between Pr3+ and Mn2+ in K2YZr(PO4)3: Pr, Mn phosphor,” Mater. Chem. Phys.127(1-2), 170–173 (2011).
[CrossRef]

Mater. Res. Bull. (1)

S. Ye, Z. S. Liu, J. G. Wang, and X. P. Jing, “Luminescent properties of Sr2P2O7: Eu, Mn phosphor under near UV excitation,” Mater. Res. Bull.43(5), 1057–1065 (2008).
[CrossRef]

Opt. Mater. (2)

H. He, R. L. Fu, Y. G. Cao, X. F. Song, Z. W. Pan, X. R. Zhao, Q. B. Xiao, and R. Li, “Ce3+-Eu2+ energy transfer mechanism in the Li2SrSiO4: Eu2+, Ce3+ phosphor,” Opt. Mater.32(5), 632–636 (2010).
[CrossRef]

Y. Shuanglong, C. Xianlin, Z. Chaofeng, Y. Yunxia, and C. Guorong, “Eu2+, Mn2+ Co-doped (Sr, Ba)6BP5O20 - a novel phosphor for white-LED,” Opt. Mater.30(1), 192–194 (2007).
[CrossRef]

Other (1)

A. A. Coelho, TOPAS ACADEMIC, version 4, Brisbane, Australia, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

X-ray diffraction patterns for part of α-Sr1.94-xCe0.03Na0.03MnxP2O7 (x = 0, 0.1, 0.2) and α-Sr1.9-xCexNaxMn0.1P2O7 (x = 0, 0.03, 0.05) samples at room temperature.

Fig. 2
Fig. 2

Excitation and emission spectra of α-Sr1.90Mn0.1P2O7 sample at RT (λex = 404 nm, λem = 595 nm).

Fig. 3
Fig. 3

(a, c) Normalized emission spectra for different doping concentration samples chemical formulae upon 403 nm and 406 excitation, (b, d) Normalized emission spectra for α-Sr1.97Mn0.03P2O7 and α-Sr1.8Mn0.2P2O7 samples under 403 nm and 406 nm excitation.

Fig. 4
Fig. 4

The experimental (crosses) and calculated (red solid line) XRD patterns and their difference (blue solid line) for Sr1.90Mn0.10P2O7. The second row of Brag positions belongs to the second phase Mn3Sr18(PO4)12.

Fig. 5
Fig. 5

Excitation spectra for α-Sr2-xMnxP2O7 (x = 0.03, 0.10, 0.20) by monitoring at 540 nm and 640 nm.

Fig. 6
Fig. 6

Decay curves for α-Sr2-xMnxP2O7 (x = 0.01, 0.03, 0.05, 0.08, 0.10, 0.15, 0.20) (a) λex = 403 nm, λem = 540 nm (b) λex = 406 nm, λem = 640 nm.

Fig. 7
Fig. 7

Excitation spectrum of Mn2+ and emission spectrum of Ce3+ in α-Sr2P2O7.

Fig. 8
Fig. 8

Excitation spectra for α-Sr2P2O7: xCe3+, 0.1Mn2+samples by monitoring at 595 nm at room temperature.

Fig. 9
Fig. 9

Emission spectra for sample α-Sr2P2O7: xCe3+, 0.1Mn2+ at RT under 296 and 315 nm excitation.

Fig. 10
Fig. 10

(a) The emission spectra of α-Sr2P2O7: 0.03Ce3+, xMn2+(x = 0-0.2) under 296 nm excitation (b) Relative emission intensity of Ce3+ and energy transfer efficiency from Ce3+ to Mn2+ with the increase Mn2+ concentration; The inset shows CIE chromaticity diagram for samples α-Sr2P2O7: 0.03Ce3+, xMn2+ under 296 nm excitation

Fig. 11
Fig. 11

Decay curves for α-Sr2P2O7: 0.03Ce3+, xMn2+ samples (λex = 296 nm, 315 nm, λem = 540 nm, 640 nm).

Fig. 12
Fig. 12

Decay curves for Ce3+ ions with different Mn2+ concentrations in samples α-Sr2P2O7: 0.03Ce3+, xMn2+ (a) λex = 296 nm, λem = 310 nm (b) λex = 315 nm, λem = 350 nm.

Tables (1)

Tables Icon

Table 1 Crystallographic Data and structure parameters of α-Sr2-xMnxP2O7 (x = 0.01, 0.10, 0.20)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η T =1 I s I so
R c 2 ( 3V 4π x c N ) 1 3

Metrics