Abstract

We present in numerical simulations the robustness of subcarrier index modulation (SIM) OFDM to combat laser phase noise. The ability of using DFB lasers with SIM-OFDM in 16-QAM CO-OFDM system with 1024-point FFT has been verified. Although SIM-OFDM has lower spectral efficiency compared to the conventional CO-OFDM system, it is a good candidate for 16-QAM CO-OFDM system with 1024-point FFT which uses a DFB laser of 1 MHz linewidth. In addition, we show the tolerance of SIM-OFDM for mitigation of fiber nonlinearities in long-haul CO-OFDM system. The simulation results show a significant penalty reduction, essentially that due to SPM.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol.17(5), 421–438 (2011).
    [CrossRef]
  2. B. Inan, S. Adhikari, O. Karakaya, P. Kainzmaier, M. Mocker, H. von Kirchbauer, N. Hanik, and S. L. Jansen, “Real-time 93.8-Gb/s polarization-multiplexed OFDM transmitter with 1024-point IFFT,” Opt. Express19(26), B64–B68 (2011).
    [CrossRef] [PubMed]
  3. R. Schmogrow, M. Winter, B. Nebendahl, D. Hillerkuss, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “101.5 Gbit/s Real-Time OFDM Transmitter with 16QAM Modulated Subcarriers,” OFC, OWE5 (2011).
  4. S. Adhikari, B. Inan, O. Karakaya, W. Rosenkranz, and S. L. Jansen, “FFT optimization for practical OFDM implementations,” ECOC, 1–3 (2011).
  5. S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “Coherent Optical 25.8-Gb/s OFDM Transmission over 4,160-km SSMF,” J. Lightwave Technol.26(1), 6–15 (2008).
    [CrossRef]
  6. B. Inan, S. Randel, S. L. Jansen, A. Lobato, S. Adhikari, and N. Hanik, “Pilot-tone-Based Nonlinearity Compensation for Optical OFDM Systems,” ECOC, Tu.4.A.6 (2010).
  7. Y. Zhao and S. G. Haggman, “Intercarrier interference self-cancellation scheme for OFDM mobile communication systems,” IEEE Trans. Commun.49(7), 1185–1191 (2001).
    [CrossRef]
  8. B. Goebel, S. Hellerbrand, N. Haufe, and N. Hanik, “PAPR reduction techniques for coherent optical OFDM transmission,” ICTON, 1–4 (2009).
  9. B. S. Krongold, Y. Tang, and W. Shieh, “Fiber nonlinearity mitigation by PAPR reduction in coherent optical OFDM systems via active constellation extension,” ECOC, 1–2 (2008).
  10. H. Bao and W. Shieh, “Transmission simulation of coherent optical OFDM signals in WDM systems,” Opt. Express15(8), 4410–4418 (2007).
    [CrossRef] [PubMed]
  11. O. Jan, D. Sandel, M. El-Darawy, K. Puntsri, A. Al-Bermani, and R. Noé, “Fiber nonlinearity tolerance of SIM-OFDM in CO-OFDM transmission,” OECC, 335–336 (2012).
  12. R. Abu-alhiga and H. Haas, “Subcarrier-index modulation OFDM,” IEEE Pers. Ind. and Mobile Radio Comm., 177–181 (2009).

2011 (2)

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol.17(5), 421–438 (2011).
[CrossRef]

B. Inan, S. Adhikari, O. Karakaya, P. Kainzmaier, M. Mocker, H. von Kirchbauer, N. Hanik, and S. L. Jansen, “Real-time 93.8-Gb/s polarization-multiplexed OFDM transmitter with 1024-point IFFT,” Opt. Express19(26), B64–B68 (2011).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2001 (1)

Y. Zhao and S. G. Haggman, “Intercarrier interference self-cancellation scheme for OFDM mobile communication systems,” IEEE Trans. Commun.49(7), 1185–1191 (2001).
[CrossRef]

Adhikari, S.

Bao, H.

Du, L. B.

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol.17(5), 421–438 (2011).
[CrossRef]

Haggman, S. G.

Y. Zhao and S. G. Haggman, “Intercarrier interference self-cancellation scheme for OFDM mobile communication systems,” IEEE Trans. Commun.49(7), 1185–1191 (2001).
[CrossRef]

Hanik, N.

Inan, B.

Jansen, S. L.

Kainzmaier, P.

Karakaya, O.

Lowery, A. J.

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol.17(5), 421–438 (2011).
[CrossRef]

Mocker, M.

Morita, I.

Schenk, T. C. W.

Shieh, W.

Takeda, N.

Tanaka, H.

von Kirchbauer, H.

Zhao, Y.

Y. Zhao and S. G. Haggman, “Intercarrier interference self-cancellation scheme for OFDM mobile communication systems,” IEEE Trans. Commun.49(7), 1185–1191 (2001).
[CrossRef]

IEEE Trans. Commun. (1)

Y. Zhao and S. G. Haggman, “Intercarrier interference self-cancellation scheme for OFDM mobile communication systems,” IEEE Trans. Commun.49(7), 1185–1191 (2001).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Fiber Technol. (1)

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol.17(5), 421–438 (2011).
[CrossRef]

Other (7)

R. Schmogrow, M. Winter, B. Nebendahl, D. Hillerkuss, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “101.5 Gbit/s Real-Time OFDM Transmitter with 16QAM Modulated Subcarriers,” OFC, OWE5 (2011).

S. Adhikari, B. Inan, O. Karakaya, W. Rosenkranz, and S. L. Jansen, “FFT optimization for practical OFDM implementations,” ECOC, 1–3 (2011).

B. Inan, S. Randel, S. L. Jansen, A. Lobato, S. Adhikari, and N. Hanik, “Pilot-tone-Based Nonlinearity Compensation for Optical OFDM Systems,” ECOC, Tu.4.A.6 (2010).

B. Goebel, S. Hellerbrand, N. Haufe, and N. Hanik, “PAPR reduction techniques for coherent optical OFDM transmission,” ICTON, 1–4 (2009).

B. S. Krongold, Y. Tang, and W. Shieh, “Fiber nonlinearity mitigation by PAPR reduction in coherent optical OFDM systems via active constellation extension,” ECOC, 1–2 (2008).

O. Jan, D. Sandel, M. El-Darawy, K. Puntsri, A. Al-Bermani, and R. Noé, “Fiber nonlinearity tolerance of SIM-OFDM in CO-OFDM transmission,” OECC, 335–336 (2012).

R. Abu-alhiga and H. Haas, “Subcarrier-index modulation OFDM,” IEEE Pers. Ind. and Mobile Radio Comm., 177–181 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Scheme of self-cancellation technique, (b) Scheme of PCF technique.

Fig. 2
Fig. 2

Subcarrier-index modulation OFDM with 16-QAM and 1024-point FFT.

Fig. 3
Fig. 3

System setup: (PCF or SC) is not used with No Comp. scheme of nonlinearity effect, biasing MZM to add RFP is not used with all schemes of nonlinearity effect, (PBC, PBS, X spans) blocks are not used with evaluation of laser phase noise, Coherent detection block consists of 90°hybrid and two balance photo-detectors; RFP Comp. block used only with evaluation of laser phase noise.

Fig. 4
Fig. 4

(a) BER performance for 1 MHz laser linewidth, (b) Required OSNR versus laser linewidth for BER = 10−3.

Fig. 5
Fig. 5

(a) System Q-factor versus optical launch power over 800 km fiber length, (b) System Q-factor versus fiber length at 0 dBm launch power

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Y"(k)=Y'(k)Y'(k1).
S selfcancelation [bits/s/Hz]= 1 2 log 2 (M).
S SIMOFDM [bits/s/Hz]=1+ N act N FFT log 2 (M).

Metrics