Abstract

Optical properties and thermal stability of the solar selective absorber based on the metal/dielectric four-layer film structure were investigated in the variable temperature region. Numerical calculations were performed to simulate the spectral properties of multilayer stacks with different metal materials and film thickness. The typical four-layer film structure using the transition metal Cr as the thin solar absorbing layer [SiO2(90nm)/Cr(10nm)/SiO2(80nm)/Al (≥100nm)] was fabricated on the Si or K9 glass substrate by using the magnetron sputtering method. The results indicate that the metal/dielectric film structure has a good spectral selective property suitable for solar thermal applications with solar absorption efficiency higher than 95% in the 400-1200nm wavelength range and a very low thermal emittance in the infrared region. The solar selective absorber with the thin Cr layer has shown a good thermal stability up to the temperature of 873K under vacuum atmosphere. The experimental results are in good agreement with the calculated spectral results.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Duffle, “Reflective solar cooker designs,” in Transactions of international conference on the use of solar energy-the scientific basis, Vol 3, Part 2 (University of Arizona, 1955, pp. 79–86.
  2. C. G. Granqvist and O. Hunderi, “Selective absorption of solar energy in ultrafine metal particles: Model calculations,” J. Appl. Phys.50(2), 1058–1063 (1979).
    [CrossRef]
  3. D. M. Trotter and A. J. Sievers, “Spectral selectivity of high-temperature solar absorbers,” Appl. Opt.19(5), 711–728 (1980).
    [CrossRef] [PubMed]
  4. D. R. Mills, “Limits of solar selective surface performance,” Appl. Opt.24(20), 3374–3380 (1985).
    [CrossRef] [PubMed]
  5. Q. C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys.72(7), 3013–3021 (1992).
    [CrossRef]
  6. Q. C. Zhang and D. R. Mills, “New cermet film structures with much improved selectivity for solar thermal applications,” Appl. Phys. Lett.60(5), 545–547 (1992).
    [CrossRef]
  7. Y. Yin and R. E. Collins, “Optimization and analysis of solar selective surfaces with continuous and multilayer profiles,” J. Appl. Phys.77(12), 6485–6491 (1995).
    [CrossRef]
  8. X. F. Li, Y. R. Chen, J. Miao, P. Zhou, Y. X. Zheng, L. Y. Chen, and Y. P. Lee, “High solar absorption of a multilayered thin film structure,” Opt. Express15(4), 1907–1912 (2007).
    [CrossRef] [PubMed]
  9. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express17(25), 22800–22812 (2009).
    [CrossRef] [PubMed]
  10. N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express18(6), 5525–5540 (2010).
    [CrossRef] [PubMed]
  11. J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107(5), 053117–053123 (2010).
    [CrossRef]
  12. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express18(S3Suppl 3), A314–A334 (2010).
    [CrossRef] [PubMed]
  13. C. Lin and M. L. Povinelli, “Optimal design of a periodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express19(S5Suppl 5), A1148–A1154 (2011).
    [CrossRef] [PubMed]
  14. C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express19(2), 415–424 (2011).
    [CrossRef] [PubMed]
  15. K. D. Olson and J. J. Talghader, “Absorption to reflection transition in selective solar coatings,” Opt. Express20(S4Suppl 4), A554–A559 (2012).
    [CrossRef] [PubMed]
  16. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni and Pd,” Phys. Rev. B9(12), 5056–5070 (1974).
    [CrossRef]
  17. D. W. Lynch and W. R. Hunter W. R., “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed., 275–367 (Academic Press, Orlando, Fla., 1985).
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  19. L. W. Bos and D. W. Lynch, “Optical Properties of Antiferromagnetic Chromium and Dilute Cr-Mn and Cr-Re Alloys,” Phys. Rev. B2(11), 4567–4577 (1970).
    [CrossRef]

2012 (1)

2011 (2)

2010 (3)

2009 (1)

2007 (1)

1995 (1)

Y. Yin and R. E. Collins, “Optimization and analysis of solar selective surfaces with continuous and multilayer profiles,” J. Appl. Phys.77(12), 6485–6491 (1995).
[CrossRef]

1992 (2)

Q. C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys.72(7), 3013–3021 (1992).
[CrossRef]

Q. C. Zhang and D. R. Mills, “New cermet film structures with much improved selectivity for solar thermal applications,” Appl. Phys. Lett.60(5), 545–547 (1992).
[CrossRef]

1985 (1)

1980 (1)

1979 (1)

C. G. Granqvist and O. Hunderi, “Selective absorption of solar energy in ultrafine metal particles: Model calculations,” J. Appl. Phys.50(2), 1058–1063 (1979).
[CrossRef]

1974 (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni and Pd,” Phys. Rev. B9(12), 5056–5070 (1974).
[CrossRef]

1970 (1)

L. W. Bos and D. W. Lynch, “Optical Properties of Antiferromagnetic Chromium and Dilute Cr-Mn and Cr-Re Alloys,” Phys. Rev. B2(11), 4567–4577 (1970).
[CrossRef]

Agrawal, M.

Araghchini, M.

Bermel, P.

Bos, L. W.

L. W. Bos and D. W. Lynch, “Optical Properties of Antiferromagnetic Chromium and Dilute Cr-Mn and Cr-Re Alloys,” Phys. Rev. B2(11), 4567–4577 (1970).
[CrossRef]

Celanovic, I.

Chan, W.

Chen, L. Y.

Chen, Y. R.

Chern, R. L.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni and Pd,” Phys. Rev. B9(12), 5056–5070 (1974).
[CrossRef]

Collins, R. E.

Y. Yin and R. E. Collins, “Optimization and analysis of solar selective surfaces with continuous and multilayer profiles,” J. Appl. Phys.77(12), 6485–6491 (1995).
[CrossRef]

Furno, M.

J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107(5), 053117–053123 (2010).
[CrossRef]

Ghebrebrhan, M.

Granqvist, C. G.

C. G. Granqvist and O. Hunderi, “Selective absorption of solar energy in ultrafine metal particles: Model calculations,” J. Appl. Phys.50(2), 1058–1063 (1979).
[CrossRef]

Hamam, R.

Hunderi, O.

C. G. Granqvist and O. Hunderi, “Selective absorption of solar energy in ultrafine metal particles: Model calculations,” J. Appl. Phys.50(2), 1058–1063 (1979).
[CrossRef]

Jensen, K. F.

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni and Pd,” Phys. Rev. B9(12), 5056–5070 (1974).
[CrossRef]

Johnson, S. G.

Lee, Y. P.

Leo, K.

J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107(5), 053117–053123 (2010).
[CrossRef]

Li, X. F.

Lin, C.

Lin, C. H.

Lin, H. Y.

Lynch, D. W.

L. W. Bos and D. W. Lynch, “Optical Properties of Antiferromagnetic Chromium and Dilute Cr-Mn and Cr-Re Alloys,” Phys. Rev. B2(11), 4567–4577 (1970).
[CrossRef]

Marton, C. H.

Meiss, J.

J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107(5), 053117–053123 (2010).
[CrossRef]

Miao, J.

Mills, D. R.

Q. C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys.72(7), 3013–3021 (1992).
[CrossRef]

Q. C. Zhang and D. R. Mills, “New cermet film structures with much improved selectivity for solar thermal applications,” Appl. Phys. Lett.60(5), 545–547 (1992).
[CrossRef]

D. R. Mills, “Limits of solar selective surface performance,” Appl. Opt.24(20), 3374–3380 (1985).
[CrossRef] [PubMed]

Olson, K. D.

Peumans, P.

Pfuetzner, S.

J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107(5), 053117–053123 (2010).
[CrossRef]

Pincon, O.

Povinelli, M. L.

Riede, M.

J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107(5), 053117–053123 (2010).
[CrossRef]

Sergeant, N. P.

Sievers, A. J.

Soljacic, M.

Talghader, J. J.

Trotter, D. M.

Yeng, Y. X.

Yin, Y.

Y. Yin and R. E. Collins, “Optimization and analysis of solar selective surfaces with continuous and multilayer profiles,” J. Appl. Phys.77(12), 6485–6491 (1995).
[CrossRef]

Zhang, Q. C.

Q. C. Zhang and D. R. Mills, “New cermet film structures with much improved selectivity for solar thermal applications,” Appl. Phys. Lett.60(5), 545–547 (1992).
[CrossRef]

Q. C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys.72(7), 3013–3021 (1992).
[CrossRef]

Zheng, Y. X.

Zhou, P.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Q. C. Zhang and D. R. Mills, “New cermet film structures with much improved selectivity for solar thermal applications,” Appl. Phys. Lett.60(5), 545–547 (1992).
[CrossRef]

J. Appl. Phys. (4)

Y. Yin and R. E. Collins, “Optimization and analysis of solar selective surfaces with continuous and multilayer profiles,” J. Appl. Phys.77(12), 6485–6491 (1995).
[CrossRef]

Q. C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys.72(7), 3013–3021 (1992).
[CrossRef]

C. G. Granqvist and O. Hunderi, “Selective absorption of solar energy in ultrafine metal particles: Model calculations,” J. Appl. Phys.50(2), 1058–1063 (1979).
[CrossRef]

J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107(5), 053117–053123 (2010).
[CrossRef]

Opt. Express (7)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni and Pd,” Phys. Rev. B9(12), 5056–5070 (1974).
[CrossRef]

L. W. Bos and D. W. Lynch, “Optical Properties of Antiferromagnetic Chromium and Dilute Cr-Mn and Cr-Re Alloys,” Phys. Rev. B2(11), 4567–4577 (1970).
[CrossRef]

Other (3)

D. W. Lynch and W. R. Hunter W. R., “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed., 275–367 (Academic Press, Orlando, Fla., 1985).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

J. A. Duffle, “Reflective solar cooker designs,” in Transactions of international conference on the use of solar energy-the scientific basis, Vol 3, Part 2 (University of Arizona, 1955, pp. 79–86.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the solar selective absorber with a four-layered structure.

Fig. 2
Fig. 2

Comparison of spectral absorptance of different transition metal layers (Cr, Ti, Co, Ni, W, Mn, Pt and Ir) with proper thickness used in the structure. The thickness of other layers is that: reflection layer Al (t = 100nm), transparent dielectric layer SiO2 (t = 90nm) and the anti-reflection dielectric layer SiO2 (t = 100nm).

Fig. 3
Fig. 3

Comparison of spectral absorption of different metal reflection layer materials (Al, Ag, Cu, Au and Cr) with fixed thickness (t = 100nm).

Fig. 4
Fig. 4

Comparison of spectral absorptance of different dielectric layer materials (Al2O3, SiO2, CaF2, BK7, KCl and MgF2) with fixed thickness (t = 100nm).

Fig. 5
Fig. 5

Simulated data with respect to transmittance, reflectance and absorptance of the four-layer film structure [SiO2(90nm)/Cr(10nm)/SiO2(80nm)/Al(100nm)] on the Si substrate under the normal incidence condition.

Fig. 6
Fig. 6

The calculated reflectance spectra of the multilayer film in the 1-30μm wavelength region. The inset shows the calculated emittance under the near normal incident condition as the function of temperature changing from 300K to 1000K.

Fig. 7
Fig. 7

Transmission electron microscope (TEM) image of the four layer film sample with the structure [SiO2 (90nm)/Cr (10nm)/ SiO2 (80nm)/Al (≥100nm)] deposited on the Si substrate.

Fig. 8
Fig. 8

Absorptance and transmittance spectra of sputtered film sample [SiO2(90nm)/Cr (10nm)/SiO2 (80nm)/Al (≥100nm)] were measured in the 300-800nm wavelength region under the incidence angle condition of 35°.

Fig. 9
Fig. 9

Absorptance of the sample measured by the spectrometer in the 0.3-1.8μm wavelength region under the near normal incidence condition.

Fig. 10
Fig. 10

The optically smooth surface (20x10mm2) of the sample deposited on the K9 glass substrate has a deep black color, indicating the high photon absorption characteristics in the entire visible region.

Fig. 11
Fig. 11

The comparison of reflectance spectra between measured and simulated ones in the 1-5μm infrared region for the film structure [SiO2(90nm)/Cr (10nm)/ SiO2 (80nm)/Al (≥100nm)].

Fig. 12
Fig. 12

The measured absorptance spectrum of the sample before and after the heat treatment process at 873K.

Tables (1)

Tables Icon

Table 1 Calculated Emittance Values of the Four-layer Metal/Dielectric Film Structure [SiO2(90nm)/Cr(10nm)/SiO2(80nm)/Al(100nm)]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε(θ,T)= 0 dλE(T,λ)[1R(θ,λ)] 0 dλE(T,λ)
E(T,λ)= 8πhc λ 5 [ exp( hc / λ k B T )1 ] 1

Metrics