Abstract

We demonstrate the fabrication of single mode optical waveguides by irradiating polydimethylsiloxane (PDMS) with a low cost Hg lamp through a conventional quartz mask. By increasing the refractive index of the irradiated areas, waveguiding is achieved with an attenuation of 0.47 dB/cm at a wavelength of 635 nm. The refractive index change is stable in ambient air and water for time periods of more than 3 months. The excitation of water-dispersed fluorescent nanoparticles in the evanescent field of the waveguide is demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1339–1365 (2002).
    [CrossRef]
  2. D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A Bio-Fluidic-Photonic Platform Based on Deep UV Modification of Polymers,” IEEE J. Sel. Top. Quantum Electron.13(2), 214–222 (2007).
    [CrossRef]
  3. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci.28(1), 153–184 (1998).
    [CrossRef]
  4. J. C. McDonald and G. M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res.35(7), 491–499 (2002).
    [CrossRef] [PubMed]
  5. V. Lien, Y. Berdichevsky, and Y.-H. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photonic. Tech. L.16(6), 1525–1527 (2004).
    [CrossRef]
  6. S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” AEU, Int. J. Electron. Commun.61(3), 163–167 (2007).
    [CrossRef]
  7. D. A. Chang-Yen, R. K. Eich, and B. K. Gale, “A Monolithic PDMS waveguide system fabricated using soft-lithography techniques,” J. Lightwave Technol.23(6), 2088–2093 (2005).
    [CrossRef]
  8. M. Okoshi, J. Li, and P. R. Herman, “157 nm F2-laser writing of silica optical waveguides in silicone rubber,” Opt. Lett.30(20), 2730–2732 (2005).
    [CrossRef] [PubMed]
  9. C. N. B. Udalagama, S. F. Chan, S. Homhuan, A. A. Bettiol, T. Wohland, and F. Watt, “Fabrication of integrated channel waveguides in polydimethylsiloxane (PDMS) using proton beam writing (PBW): applications for fluorescence detection in microfluidic channels,” in Proc. SPIE (SPIE, 2008), Vol. 6882, 68820D–8.
  10. F. Egitto and L. Matienzo, “Transformation of Poly(dimethylsiloxane) into thin surface films of SiOx by UV/Ozone treatment. Part I: Factors affecting modification,” J. Mater. Sci.41(19), 6362–6373 (2006).
    [CrossRef]
  11. M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV / ozone photochemical processes,” Chemical Vapor Deposition1591–1596 (2000).
  12. Y. Berdichevsky, J. Khandurina, A. Guttman, and Y.-H. Lo, “UV/ozone modification of poly(dimethylsiloxane) microfluidic channels,” Sens. Actuators B Chem.97(2-3), 402–408 (2004).
    [CrossRef]
  13. T. Scharnweber, R. Truckenmüller, A. M. Schneider, A. Welle, M. Reinhardt, and S. Giselbrecht, “Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography,” Lab Chip11(7), 1368–1371 (2011).
    [CrossRef] [PubMed]
  14. N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999).
    [CrossRef]
  15. H.-N. Kim, S.-H. Lee, and K.-Y. Suh, “Controlled mechanical fracture for fabricating microchannels with various size gradients,” Lab Chip11(4), 717–722 (2011).
    [CrossRef] [PubMed]
  16. T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential Self-Assembly of Surface-Modified Si/SiOx Nanoparticles on UV/Ozone Micropatterned Poly(dimethylsiloxane) Films,” Adv. Mater. (Deerfield Beach Fla.)12(17), 1257–1261 (2000).
    [CrossRef]
  17. H. Oláh, H. Hillborg, and G. J. Vancso, “Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification,” Appl. Surf. Sci.239(3-4), 410–423 (2005).
    [CrossRef]
  18. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys.151(2), 95–99 (2009).
    [CrossRef]
  19. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem.61(1-3), 100–127 (1999).
    [CrossRef]

2011 (2)

T. Scharnweber, R. Truckenmüller, A. M. Schneider, A. Welle, M. Reinhardt, and S. Giselbrecht, “Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography,” Lab Chip11(7), 1368–1371 (2011).
[CrossRef] [PubMed]

H.-N. Kim, S.-H. Lee, and K.-Y. Suh, “Controlled mechanical fracture for fabricating microchannels with various size gradients,” Lab Chip11(4), 717–722 (2011).
[CrossRef] [PubMed]

2009 (1)

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys.151(2), 95–99 (2009).
[CrossRef]

2007 (2)

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A Bio-Fluidic-Photonic Platform Based on Deep UV Modification of Polymers,” IEEE J. Sel. Top. Quantum Electron.13(2), 214–222 (2007).
[CrossRef]

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” AEU, Int. J. Electron. Commun.61(3), 163–167 (2007).
[CrossRef]

2006 (1)

F. Egitto and L. Matienzo, “Transformation of Poly(dimethylsiloxane) into thin surface films of SiOx by UV/Ozone treatment. Part I: Factors affecting modification,” J. Mater. Sci.41(19), 6362–6373 (2006).
[CrossRef]

2005 (3)

2004 (2)

V. Lien, Y. Berdichevsky, and Y.-H. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photonic. Tech. L.16(6), 1525–1527 (2004).
[CrossRef]

Y. Berdichevsky, J. Khandurina, A. Guttman, and Y.-H. Lo, “UV/ozone modification of poly(dimethylsiloxane) microfluidic channels,” Sens. Actuators B Chem.97(2-3), 402–408 (2004).
[CrossRef]

2002 (2)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1339–1365 (2002).
[CrossRef]

J. C. McDonald and G. M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res.35(7), 491–499 (2002).
[CrossRef] [PubMed]

2000 (2)

M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV / ozone photochemical processes,” Chemical Vapor Deposition1591–1596 (2000).

T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential Self-Assembly of Surface-Modified Si/SiOx Nanoparticles on UV/Ozone Micropatterned Poly(dimethylsiloxane) Films,” Adv. Mater. (Deerfield Beach Fla.)12(17), 1257–1261 (2000).
[CrossRef]

1999 (2)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem.61(1-3), 100–127 (1999).
[CrossRef]

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999).
[CrossRef]

1998 (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci.28(1), 153–184 (1998).
[CrossRef]

Berdichevsky, Y.

V. Lien, Y. Berdichevsky, and Y.-H. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photonic. Tech. L.16(6), 1525–1527 (2004).
[CrossRef]

Y. Berdichevsky, J. Khandurina, A. Guttman, and Y.-H. Lo, “UV/ozone modification of poly(dimethylsiloxane) microfluidic channels,” Sens. Actuators B Chem.97(2-3), 402–408 (2004).
[CrossRef]

Boulares, A.

M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV / ozone photochemical processes,” Chemical Vapor Deposition1591–1596 (2000).

Bowden, N.

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999).
[CrossRef]

Bruendel, M.

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A Bio-Fluidic-Photonic Platform Based on Deep UV Modification of Polymers,” IEEE J. Sel. Top. Quantum Electron.13(2), 214–222 (2007).
[CrossRef]

Cai, D.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” AEU, Int. J. Electron. Commun.61(3), 163–167 (2007).
[CrossRef]

Chang-Yen, D. A.

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1339–1365 (2002).
[CrossRef]

Draheim, J.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys.151(2), 95–99 (2009).
[CrossRef]

Egitto, F.

F. Egitto and L. Matienzo, “Transformation of Poly(dimethylsiloxane) into thin surface films of SiOx by UV/Ozone treatment. Part I: Factors affecting modification,” J. Mater. Sci.41(19), 6362–6373 (2006).
[CrossRef]

Eich, R. K.

Gale, B. K.

Giselbrecht, S.

T. Scharnweber, R. Truckenmüller, A. M. Schneider, A. Welle, M. Reinhardt, and S. Giselbrecht, “Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography,” Lab Chip11(7), 1368–1371 (2011).
[CrossRef] [PubMed]

Guttman, A.

Y. Berdichevsky, J. Khandurina, A. Guttman, and Y.-H. Lo, “UV/ozone modification of poly(dimethylsiloxane) microfluidic channels,” Sens. Actuators B Chem.97(2-3), 402–408 (2004).
[CrossRef]

Heideman, R. G.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem.61(1-3), 100–127 (1999).
[CrossRef]

Herman, P. R.

Hillborg, H.

H. Oláh, H. Hillborg, and G. J. Vancso, “Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification,” Appl. Surf. Sci.239(3-4), 410–423 (2005).
[CrossRef]

Huck, W. T. S.

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999).
[CrossRef]

Ichihashi, Y.

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A Bio-Fluidic-Photonic Platform Based on Deep UV Modification of Polymers,” IEEE J. Sel. Top. Quantum Electron.13(2), 214–222 (2007).
[CrossRef]

Isaacson, M.

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A Bio-Fluidic-Photonic Platform Based on Deep UV Modification of Polymers,” IEEE J. Sel. Top. Quantum Electron.13(2), 214–222 (2007).
[CrossRef]

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1339–1365 (2002).
[CrossRef]

Kamberger, R.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys.151(2), 95–99 (2009).
[CrossRef]

Khandurina, J.

Y. Berdichevsky, J. Khandurina, A. Guttman, and Y.-H. Lo, “UV/ozone modification of poly(dimethylsiloxane) microfluidic channels,” Sens. Actuators B Chem.97(2-3), 402–408 (2004).
[CrossRef]

Kim, H.-N.

H.-N. Kim, S.-H. Lee, and K.-Y. Suh, “Controlled mechanical fracture for fabricating microchannels with various size gradients,” Lab Chip11(4), 717–722 (2011).
[CrossRef] [PubMed]

Koberstein, J. T.

T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential Self-Assembly of Surface-Modified Si/SiOx Nanoparticles on UV/Ozone Micropatterned Poly(dimethylsiloxane) Films,” Adv. Mater. (Deerfield Beach Fla.)12(17), 1257–1261 (2000).
[CrossRef]

M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV / ozone photochemical processes,” Chemical Vapor Deposition1591–1596 (2000).

Kopetz, S.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” AEU, Int. J. Electron. Commun.61(3), 163–167 (2007).
[CrossRef]

Lambeck, P. V.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem.61(1-3), 100–127 (1999).
[CrossRef]

Lee, S.-H.

H.-N. Kim, S.-H. Lee, and K.-Y. Suh, “Controlled mechanical fracture for fabricating microchannels with various size gradients,” Lab Chip11(4), 717–722 (2011).
[CrossRef] [PubMed]

Li, J.

Lien, V.

V. Lien, Y. Berdichevsky, and Y.-H. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photonic. Tech. L.16(6), 1525–1527 (2004).
[CrossRef]

Lo, Y.-H.

V. Lien, Y. Berdichevsky, and Y.-H. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photonic. Tech. L.16(6), 1525–1527 (2004).
[CrossRef]

Y. Berdichevsky, J. Khandurina, A. Guttman, and Y.-H. Lo, “UV/ozone modification of poly(dimethylsiloxane) microfluidic channels,” Sens. Actuators B Chem.97(2-3), 402–408 (2004).
[CrossRef]

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1339–1365 (2002).
[CrossRef]

Matienzo, L.

F. Egitto and L. Matienzo, “Transformation of Poly(dimethylsiloxane) into thin surface films of SiOx by UV/Ozone treatment. Part I: Factors affecting modification,” J. Mater. Sci.41(19), 6362–6373 (2006).
[CrossRef]

McDonald, J. C.

J. C. McDonald and G. M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res.35(7), 491–499 (2002).
[CrossRef] [PubMed]

Muisener, R. J.

M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV / ozone photochemical processes,” Chemical Vapor Deposition1591–1596 (2000).

T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential Self-Assembly of Surface-Modified Si/SiOx Nanoparticles on UV/Ozone Micropatterned Poly(dimethylsiloxane) Films,” Adv. Mater. (Deerfield Beach Fla.)12(17), 1257–1261 (2000).
[CrossRef]

Neyer, A.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” AEU, Int. J. Electron. Commun.61(3), 163–167 (2007).
[CrossRef]

Okoshi, M.

Oláh, H.

H. Oláh, H. Hillborg, and G. J. Vancso, “Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification,” Appl. Surf. Sci.239(3-4), 410–423 (2005).
[CrossRef]

Ouyang, M.

M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV / ozone photochemical processes,” Chemical Vapor Deposition1591–1596 (2000).

Papadimitrakopoulos, F.

T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential Self-Assembly of Surface-Modified Si/SiOx Nanoparticles on UV/Ozone Micropatterned Poly(dimethylsiloxane) Films,” Adv. Mater. (Deerfield Beach Fla.)12(17), 1257–1261 (2000).
[CrossRef]

Paul, K. E.

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999).
[CrossRef]

Phely-Bobin, T. S.

T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential Self-Assembly of Surface-Modified Si/SiOx Nanoparticles on UV/Ozone Micropatterned Poly(dimethylsiloxane) Films,” Adv. Mater. (Deerfield Beach Fla.)12(17), 1257–1261 (2000).
[CrossRef]

Rabe, E.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” AEU, Int. J. Electron. Commun.61(3), 163–167 (2007).
[CrossRef]

Rabus, D. G.

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A Bio-Fluidic-Photonic Platform Based on Deep UV Modification of Polymers,” IEEE J. Sel. Top. Quantum Electron.13(2), 214–222 (2007).
[CrossRef]

Reinhardt, M.

T. Scharnweber, R. Truckenmüller, A. M. Schneider, A. Welle, M. Reinhardt, and S. Giselbrecht, “Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography,” Lab Chip11(7), 1368–1371 (2011).
[CrossRef] [PubMed]

Scharnweber, T.

T. Scharnweber, R. Truckenmüller, A. M. Schneider, A. Welle, M. Reinhardt, and S. Giselbrecht, “Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography,” Lab Chip11(7), 1368–1371 (2011).
[CrossRef] [PubMed]

Schneider, A. M.

T. Scharnweber, R. Truckenmüller, A. M. Schneider, A. Welle, M. Reinhardt, and S. Giselbrecht, “Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography,” Lab Chip11(7), 1368–1371 (2011).
[CrossRef] [PubMed]

Schneider, F.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys.151(2), 95–99 (2009).
[CrossRef]

Seger, R. A.

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A Bio-Fluidic-Photonic Platform Based on Deep UV Modification of Polymers,” IEEE J. Sel. Top. Quantum Electron.13(2), 214–222 (2007).
[CrossRef]

Suh, K.-Y.

H.-N. Kim, S.-H. Lee, and K.-Y. Suh, “Controlled mechanical fracture for fabricating microchannels with various size gradients,” Lab Chip11(4), 717–722 (2011).
[CrossRef] [PubMed]

Truckenmüller, R.

T. Scharnweber, R. Truckenmüller, A. M. Schneider, A. Welle, M. Reinhardt, and S. Giselbrecht, “Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography,” Lab Chip11(7), 1368–1371 (2011).
[CrossRef] [PubMed]

Vancso, G. J.

H. Oláh, H. Hillborg, and G. J. Vancso, “Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification,” Appl. Surf. Sci.239(3-4), 410–423 (2005).
[CrossRef]

Wallrabe, U.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys.151(2), 95–99 (2009).
[CrossRef]

Welle, A.

T. Scharnweber, R. Truckenmüller, A. M. Schneider, A. Welle, M. Reinhardt, and S. Giselbrecht, “Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography,” Lab Chip11(7), 1368–1371 (2011).
[CrossRef] [PubMed]

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A Bio-Fluidic-Photonic Platform Based on Deep UV Modification of Polymers,” IEEE J. Sel. Top. Quantum Electron.13(2), 214–222 (2007).
[CrossRef]

Whitesides, G. M.

J. C. McDonald and G. M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res.35(7), 491–499 (2002).
[CrossRef] [PubMed]

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999).
[CrossRef]

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci.28(1), 153–184 (1998).
[CrossRef]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci.28(1), 153–184 (1998).
[CrossRef]

Yuan, C.

M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV / ozone photochemical processes,” Chemical Vapor Deposition1591–1596 (2000).

Acc. Chem. Res. (1)

J. C. McDonald and G. M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res.35(7), 491–499 (2002).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1339–1365 (2002).
[CrossRef]

T. S. Phely-Bobin, R. J. Muisener, J. T. Koberstein, and F. Papadimitrakopoulos, “Preferential Self-Assembly of Surface-Modified Si/SiOx Nanoparticles on UV/Ozone Micropatterned Poly(dimethylsiloxane) Films,” Adv. Mater. (Deerfield Beach Fla.)12(17), 1257–1261 (2000).
[CrossRef]

AEU, Int. J. Electron. Commun. (1)

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical–optical circuit boards,” AEU, Int. J. Electron. Commun.61(3), 163–167 (2007).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci.28(1), 153–184 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999).
[CrossRef]

Appl. Surf. Sci. (1)

H. Oláh, H. Hillborg, and G. J. Vancso, “Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification,” Appl. Surf. Sci.239(3-4), 410–423 (2005).
[CrossRef]

Chemical Vapor Deposition (1)

M. Ouyang, C. Yuan, R. J. Muisener, A. Boulares, and J. T. Koberstein, “Conversion of some siloxane polymers to silicon oxide by UV / ozone photochemical processes,” Chemical Vapor Deposition1591–1596 (2000).

IEEE J. Sel. Top. Quantum Electron. (1)

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, “A Bio-Fluidic-Photonic Platform Based on Deep UV Modification of Polymers,” IEEE J. Sel. Top. Quantum Electron.13(2), 214–222 (2007).
[CrossRef]

IEEE Photonic. Tech. L. (1)

V. Lien, Y. Berdichevsky, and Y.-H. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photonic. Tech. L.16(6), 1525–1527 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Mater. Sci. (1)

F. Egitto and L. Matienzo, “Transformation of Poly(dimethylsiloxane) into thin surface films of SiOx by UV/Ozone treatment. Part I: Factors affecting modification,” J. Mater. Sci.41(19), 6362–6373 (2006).
[CrossRef]

Lab Chip (2)

H.-N. Kim, S.-H. Lee, and K.-Y. Suh, “Controlled mechanical fracture for fabricating microchannels with various size gradients,” Lab Chip11(4), 717–722 (2011).
[CrossRef] [PubMed]

T. Scharnweber, R. Truckenmüller, A. M. Schneider, A. Welle, M. Reinhardt, and S. Giselbrecht, “Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography,” Lab Chip11(7), 1368–1371 (2011).
[CrossRef] [PubMed]

Opt. Lett. (1)

Sens. Actuators A Phys. (1)

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys.151(2), 95–99 (2009).
[CrossRef]

Sens. Actuators B Chem. (2)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem.61(1-3), 100–127 (1999).
[CrossRef]

Y. Berdichevsky, J. Khandurina, A. Guttman, and Y.-H. Lo, “UV/ozone modification of poly(dimethylsiloxane) microfluidic channels,” Sens. Actuators B Chem.97(2-3), 402–408 (2004).
[CrossRef]

Other (1)

C. N. B. Udalagama, S. F. Chan, S. Homhuan, A. A. Bettiol, T. Wohland, and F. Watt, “Fabrication of integrated channel waveguides in polydimethylsiloxane (PDMS) using proton beam writing (PBW): applications for fluorescence detection in microfluidic channels,” in Proc. SPIE (SPIE, 2008), Vol. 6882, 68820D–8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Fabrication of the waveguides via DUV irradiation. A quartz chrome mask defines the waveguides. Irradiation from a low pressure Hg-lamp with a wavelength of 185 nm and 254 nm results in a change of refractive index of the PDMS. After irradiation the PDMS is peeled off the mask. (b) Light microscope image of a single waveguide. (c) Atomic force microscopy cross section of a waveguide. The irradiated area increases in height by approximately 50 nm, but shows a sharp reduction in height at the edges. (d) Atomic force microscopy image showing a 25 x 25 µm2 area of a waveguide.

Fig. 2
Fig. 2

Modal profiles at a wavelength of 635 nm of irradiated PDMS waveguides with different widths of UV-irradiation of the PDMS substrate. (a) The narrow waveguide with a width of 2 µm shows only weak guidance. (b) The 5 µm wide waveguide shows singlemode characteristics. (c) + (d) For the 10 µm wide waveguide two modes can be excited. (e) For the 15 µm wide waveguide only one of the numerous possible modes is shown here.

Fig. 3
Fig. 3

Waveguide attenuation determined via the cut-back method. The linear fit results in a slope of 0.47 dB/cm and incoupling losses of 0.75 dB per waveguide facet. Inset: Modal profile of a 5.4 µm wide waveguide at a wavelength of 635 nm coupled to a single mode optical fiber.

Fig. 4
Fig. 4

(a) Measurement setup for the characterisation of the Y-Splitter. (b) Output from the Y-splitter. The distance between the two waveguides is 150 µm. An even power distribution between the two waveguides is observed with a difference of less than 0.5 dB. The overall attenuation is 12 dB for a 20 mm long coupler structure. (c) Light microscopy image of the splitting area of the Y-splitter.

Fig. 5
Fig. 5

(a) Schematic of the measurement setup used for fluorescence excitation. (b) Fluorescence from the water-dispersed FluoSpheres measured through a 665 nm cut-off filter to eliminate excitation light. (c) Photograph of an optical waveguide with a 635 nm laser coupled in via a single mode fiber. A drop of water is placed on the substrate. This shows that the light is waveguided with water as cladding layer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d p = λ 2π n 1 sin 2 θ 1 ( n 2 n 1 ) 2 220nm

Metrics