Abstract

Spectral characteristics of orthogonal polarization mode coupling for pure twisted polarization maintaining fiber Bragg gratings (PM-FBG) are proposed and analyzed experimentally and theoretically. Different from the polarization mode coupling in PM-FBG due to side pressure, a resonant peak at the middle of two orthogonal polarization modes is found when the PM-FBG is twisted purely which is attributed to the cross coupling of polarization modes. Its intensity increases with the twisting rate. A new coupled mode equation is built to describe the pure twist polarization mode coupling, in which both the normal strain induced by strain-applied parts and the tangential strain induced by twisting are taken into consideration and expressed in a unified coordinate. The novel phenomenon and its explanation are believed to be helpful for PM-FBG applications in fiber sensor and laser technologies.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Ferreira, F. M. Araujo, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using interferometrically interrogated fiber Bragg grating sensors,” Opt. Eng.39(8), 2226–2234 (2000).
    [CrossRef]
  2. G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett.16(1), 221–223 (2004).
    [CrossRef]
  3. C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol.13(9), 1446–1449 (2002).
    [CrossRef]
  4. T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct.17(3), 035033 (2008).
    [CrossRef]
  5. C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech.39(3), 202–209 (1999).
    [CrossRef]
  6. C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun.230(4-6), 313–317 (2004).
    [CrossRef]
  7. Y. G. Liu, X. H. Feng, S. Z. Yuan, G. Y. Kai, and X. Y. Dong, “Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings,” Opt. Express12(10), 2056–2061 (2004).
    [CrossRef] [PubMed]
  8. C. Spiegelberg, J. H. Geng, Y. D. Hu, Y. Kaneda, S. B. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol.22(1), 57–62 (2004).
    [CrossRef]
  9. F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. P. Salathe, “Characterization of the response of fibre Bragg grating sensors subjected to a two-dimensional strain field,” Smart Mater. Struct.12(6), 925–934 (2003).
    [CrossRef]
  10. Y. P. Wang, B. F. Yun, N. Chen, and T. P. Cui, “Characterization of a high birefringence fibre Bragg grating sensor subjected to non-homogeneous transverse strain fields,” Meas. Sci. Technol.17(4), 939–942 (2006).
    [CrossRef]
  11. K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fibre: application to external writing of rocking filters,” Electron. Lett.27(17), 1548–1550 (1991).
    [CrossRef]
  12. K. S. Lee and J. Y. Cho, “Polarization-mode coupling in birefringent fiber gratings,” J. Opt. Soc. Am. A19(8), 1621–1631 (2002).
    [CrossRef] [PubMed]
  13. C. J. S. de Matos, P. Torres, L. C. G. Valente, W. Margulis, and R. Stubbe, “Fiber Bragg grating (FBG) characterization and shaping by local pressure,” J. Lightwave Technol.19(8), 1206–1211 (2001).
    [CrossRef]
  14. J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, “Spectral properties of locally pressed fiber Bragg gratings written in polarization maintaining fibers,” J. Lightwave Technol.28(9), 1291–1297 (2010).
    [CrossRef]
  15. M. S. Muller, T. C. Buck, H. J. El-Khozondar, and A. W. Koch, “Shear strain influence on fiber Bragg grating measurement systems,” J. Lightwave Technol.27(23), 5223–5229 (2009).
    [CrossRef]
  16. M. S. Muller, L. Hoffmann, A. Sandmair, and A. W. Koch, “Full strain tensor treatment of fiber Bragg grating sensors,” IEEE J. Quantum Electron.45(5), 547–553 (2009).
    [CrossRef]
  17. M. S. Müller and C. D. A. Schnarr, “Analytical coherency matrix treatment of shear strained fiber Bragg gratings,” Opt. Express17(25), 22624–22631 (2009).
    [CrossRef] [PubMed]
  18. M. S. Müller, H. J. El-Khozondar, T. C. Buck, and A. W. Koch, “Analytical solution of four-mode coupling in shear strain loaded fiber Bragg grating sensors,” Opt. Lett.34(17), 2622–2624 (2009).
    [CrossRef] [PubMed]
  19. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt.18(13), 2241–2251 (1979).
    [CrossRef] [PubMed]
  20. Z. Fang, K. Chin, R. Qu, and H. Cai, Fundamentals of Optical Fiber Sensors, (John Wiley & Sons, 2012), Chap. 3.

2010 (1)

2009 (4)

2008 (1)

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct.17(3), 035033 (2008).
[CrossRef]

2006 (1)

Y. P. Wang, B. F. Yun, N. Chen, and T. P. Cui, “Characterization of a high birefringence fibre Bragg grating sensor subjected to non-homogeneous transverse strain fields,” Meas. Sci. Technol.17(4), 939–942 (2006).
[CrossRef]

2004 (4)

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett.16(1), 221–223 (2004).
[CrossRef]

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun.230(4-6), 313–317 (2004).
[CrossRef]

Y. G. Liu, X. H. Feng, S. Z. Yuan, G. Y. Kai, and X. Y. Dong, “Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings,” Opt. Express12(10), 2056–2061 (2004).
[CrossRef] [PubMed]

C. Spiegelberg, J. H. Geng, Y. D. Hu, Y. Kaneda, S. B. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol.22(1), 57–62 (2004).
[CrossRef]

2003 (1)

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. P. Salathe, “Characterization of the response of fibre Bragg grating sensors subjected to a two-dimensional strain field,” Smart Mater. Struct.12(6), 925–934 (2003).
[CrossRef]

2002 (2)

C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol.13(9), 1446–1449 (2002).
[CrossRef]

K. S. Lee and J. Y. Cho, “Polarization-mode coupling in birefringent fiber gratings,” J. Opt. Soc. Am. A19(8), 1621–1631 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

L. A. Ferreira, F. M. Araujo, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using interferometrically interrogated fiber Bragg grating sensors,” Opt. Eng.39(8), 2226–2234 (2000).
[CrossRef]

1999 (1)

C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech.39(3), 202–209 (1999).
[CrossRef]

1991 (1)

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fibre: application to external writing of rocking filters,” Electron. Lett.27(17), 1548–1550 (1991).
[CrossRef]

1979 (1)

Araujo, F. M.

L. A. Ferreira, F. M. Araujo, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using interferometrically interrogated fiber Bragg grating sensors,” Opt. Eng.39(8), 2226–2234 (2000).
[CrossRef]

Bennett, T.

C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech.39(3), 202–209 (1999).
[CrossRef]

Bilodeau, F.

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fibre: application to external writing of rocking filters,” Electron. Lett.27(17), 1548–1550 (1991).
[CrossRef]

Bosia, F.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. P. Salathe, “Characterization of the response of fibre Bragg grating sensors subjected to a two-dimensional strain field,” Smart Mater. Struct.12(6), 925–934 (2003).
[CrossRef]

Botero-Cadavid, J. F.

Botsis, J.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. P. Salathe, “Characterization of the response of fibre Bragg grating sensors subjected to a two-dimensional strain field,” Smart Mater. Struct.12(6), 925–934 (2003).
[CrossRef]

Buck, T. C.

Causado-Buelvas, J. D.

Chaudhuri, P. R.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun.230(4-6), 313–317 (2004).
[CrossRef]

Chen, G. H.

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett.16(1), 221–223 (2004).
[CrossRef]

Chen, N.

Y. P. Wang, B. F. Yun, N. Chen, and T. P. Cui, “Characterization of a high birefringence fibre Bragg grating sensor subjected to non-homogeneous transverse strain fields,” Meas. Sci. Technol.17(4), 939–942 (2006).
[CrossRef]

Cho, J. Y.

Cui, T. P.

Y. P. Wang, B. F. Yun, N. Chen, and T. P. Cui, “Characterization of a high birefringence fibre Bragg grating sensor subjected to non-homogeneous transverse strain fields,” Meas. Sci. Technol.17(4), 939–942 (2006).
[CrossRef]

de Matos, C. J. S.

Dong, X. Y.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun.230(4-6), 313–317 (2004).
[CrossRef]

Y. G. Liu, X. H. Feng, S. Z. Yuan, G. Y. Kai, and X. Y. Dong, “Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings,” Opt. Express12(10), 2056–2061 (2004).
[CrossRef] [PubMed]

El-Khozondar, H. J.

Facchini, M.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. P. Salathe, “Characterization of the response of fibre Bragg grating sensors subjected to a two-dimensional strain field,” Smart Mater. Struct.12(6), 925–934 (2003).
[CrossRef]

Farahi, F.

L. A. Ferreira, F. M. Araujo, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using interferometrically interrogated fiber Bragg grating sensors,” Opt. Eng.39(8), 2226–2234 (2000).
[CrossRef]

Feng, X. H.

Ferreira, L. A.

L. A. Ferreira, F. M. Araujo, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using interferometrically interrogated fiber Bragg grating sensors,” Opt. Eng.39(8), 2226–2234 (2000).
[CrossRef]

Geng, J. H.

Giaccari, P.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. P. Salathe, “Characterization of the response of fibre Bragg grating sensors subjected to a two-dimensional strain field,” Smart Mater. Struct.12(6), 925–934 (2003).
[CrossRef]

Guo, X.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun.230(4-6), 313–317 (2004).
[CrossRef]

Hill, K. O.

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fibre: application to external writing of rocking filters,” Electron. Lett.27(17), 1548–1550 (1991).
[CrossRef]

Hoffmann, L.

M. S. Muller, L. Hoffmann, A. Sandmair, and A. W. Koch, “Full strain tensor treatment of fiber Bragg grating sensors,” IEEE J. Quantum Electron.45(5), 547–553 (2009).
[CrossRef]

Hong, N. J.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun.230(4-6), 313–317 (2004).
[CrossRef]

Hu, Y. D.

James, S. W.

C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol.13(9), 1446–1449 (2002).
[CrossRef]

Jia, H. Z.

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett.16(1), 221–223 (2004).
[CrossRef]

Jiang, S. B.

Johnson, D. C.

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fibre: application to external writing of rocking filters,” Electron. Lett.27(17), 1548–1550 (1991).
[CrossRef]

Kai, G. Y.

Kaneda, Y.

Koch, A. W.

Lawrence, C. M.

C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech.39(3), 202–209 (1999).
[CrossRef]

Lee, K. S.

Limberger, H. G.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. P. Salathe, “Characterization of the response of fibre Bragg grating sensors subjected to a two-dimensional strain field,” Smart Mater. Struct.12(6), 925–934 (2003).
[CrossRef]

Liu, L. Y.

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett.16(1), 221–223 (2004).
[CrossRef]

Liu, Y. G.

Lu, C.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun.230(4-6), 313–317 (2004).
[CrossRef]

Malo, B.

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fibre: application to external writing of rocking filters,” Electron. Lett.27(17), 1548–1550 (1991).
[CrossRef]

Margulis, W.

Mawatari, T.

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct.17(3), 035033 (2008).
[CrossRef]

Muller, M. S.

M. S. Muller, T. C. Buck, H. J. El-Khozondar, and A. W. Koch, “Shear strain influence on fiber Bragg grating measurement systems,” J. Lightwave Technol.27(23), 5223–5229 (2009).
[CrossRef]

M. S. Muller, L. Hoffmann, A. Sandmair, and A. W. Koch, “Full strain tensor treatment of fiber Bragg grating sensors,” IEEE J. Quantum Electron.45(5), 547–553 (2009).
[CrossRef]

Müller, M. S.

Nelson, D.

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct.17(3), 035033 (2008).
[CrossRef]

Nelson, D. V.

C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech.39(3), 202–209 (1999).
[CrossRef]

Peyghambarian, N.

Salathe, R. P.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. P. Salathe, “Characterization of the response of fibre Bragg grating sensors subjected to a two-dimensional strain field,” Smart Mater. Struct.12(6), 925–934 (2003).
[CrossRef]

Sandmair, A.

M. S. Muller, L. Hoffmann, A. Sandmair, and A. W. Koch, “Full strain tensor treatment of fiber Bragg grating sensors,” IEEE J. Quantum Electron.45(5), 547–553 (2009).
[CrossRef]

Santos, J. L.

L. A. Ferreira, F. M. Araujo, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using interferometrically interrogated fiber Bragg grating sensors,” Opt. Eng.39(8), 2226–2234 (2000).
[CrossRef]

Schnarr, C. D. A.

Simon, A.

Spiegelberg, C.

Staines, S. E.

C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol.13(9), 1446–1449 (2002).
[CrossRef]

Stubbe, R.

Tatam, R. P.

C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol.13(9), 1446–1449 (2002).
[CrossRef]

Torres, P.

Udd, E.

C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech.39(3), 202–209 (1999).
[CrossRef]

Ulrich, R.

Valente, L. C. G.

Wang, W. C.

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett.16(1), 221–223 (2004).
[CrossRef]

Wang, Y. P.

Y. P. Wang, B. F. Yun, N. Chen, and T. P. Cui, “Characterization of a high birefringence fibre Bragg grating sensor subjected to non-homogeneous transverse strain fields,” Meas. Sci. Technol.17(4), 939–942 (2006).
[CrossRef]

Xu, L.

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett.16(1), 221–223 (2004).
[CrossRef]

Yang, X. F.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun.230(4-6), 313–317 (2004).
[CrossRef]

Ye, C. C.

C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol.13(9), 1446–1449 (2002).
[CrossRef]

Yu, J. M.

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett.16(1), 221–223 (2004).
[CrossRef]

Yuan, S. Z.

Yun, B. F.

Y. P. Wang, B. F. Yun, N. Chen, and T. P. Cui, “Characterization of a high birefringence fibre Bragg grating sensor subjected to non-homogeneous transverse strain fields,” Meas. Sci. Technol.17(4), 939–942 (2006).
[CrossRef]

Zhao, C. L.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun.230(4-6), 313–317 (2004).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fibre: application to external writing of rocking filters,” Electron. Lett.27(17), 1548–1550 (1991).
[CrossRef]

Exp. Mech. (1)

C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech.39(3), 202–209 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. S. Muller, L. Hoffmann, A. Sandmair, and A. W. Koch, “Full strain tensor treatment of fiber Bragg grating sensors,” IEEE J. Quantum Electron.45(5), 547–553 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. H. Chen, L. Y. Liu, H. Z. Jia, J. M. Yu, L. Xu, and W. C. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett.16(1), 221–223 (2004).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (2)

Y. P. Wang, B. F. Yun, N. Chen, and T. P. Cui, “Characterization of a high birefringence fibre Bragg grating sensor subjected to non-homogeneous transverse strain fields,” Meas. Sci. Technol.17(4), 939–942 (2006).
[CrossRef]

C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol.13(9), 1446–1449 (2002).
[CrossRef]

Opt. Commun. (1)

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun.230(4-6), 313–317 (2004).
[CrossRef]

Opt. Eng. (1)

L. A. Ferreira, F. M. Araujo, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using interferometrically interrogated fiber Bragg grating sensors,” Opt. Eng.39(8), 2226–2234 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Smart Mater. Struct. (2)

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct.17(3), 035033 (2008).
[CrossRef]

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. P. Salathe, “Characterization of the response of fibre Bragg grating sensors subjected to a two-dimensional strain field,” Smart Mater. Struct.12(6), 925–934 (2003).
[CrossRef]

Other (1)

Z. Fang, K. Chin, R. Qu, and H. Cai, Fundamentals of Optical Fiber Sensors, (John Wiley & Sons, 2012), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

Reflection (a) and transmission (b) spectra of PM-FBG measured under different polarizations without twisting.

Fig. 3
Fig. 3

Experimental reflective spectrum (a) and reflective intensity of the middle peak (b) of PM-FBG with different twisting rate.

Fig. 4
Fig. 4

Schematic diagram of twisted PM-FBG and its four eigen modes.

Fig. 5
Fig. 5

Simulated reflective spectra (a) and reflective intensity of the middle peak (b) of PM-FBG with different twisting rate. The simulated fiber’s beat length is LB = 2.8 mm,its elasto-optical coeffient is p44 = −0.07. The simulated grating’s length is LFBG = 10 mm, its period is Λ = 531.2 nm, its index modulation is Δnuv = 1.8 × 10−4 × (sinc(2z/LFBG −1))2 with apodization.

Fig. 6
Fig. 6

Intensity evolution along the z axis of PM-FBG subjected to a twisting rate of 125.7 mrad/mm with an incident light at a wavelength of 1551.23 nm. The polarization of the incident light is only along the slow (a) and fast (b) axis respectively. The other parameters are same with Fig. 5.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε= ε ¯ + ε ¯ 2 p 44 ( Δecosθ Δesinθ τy Δesinθ Δecosθ τx τy τx e Σ )+ ε uv cos2 β B z.
2 E+ k 2 εE(E)=0.
E=[( ε ˜ +δε)E]/ ε ¯ .
E=( a 1 e iβz + b 1 e iβz ) E 1 t +( a 2 e iβz + b 2 e iβz ) E 2 t ,
Φ ^ E=( ε ˜ + ε uv cos2 β B z) k 2 E[( ε ˜ E)]/ ε ¯ ,
{ a i = i 2β [ E i+ t Φ ^ E+ 1 2 ε uv k 2 b i e i2δz ] b i = i 2β [ E i t Φ ^ E+ 1 2 ε uv k 2 a i e i2δz ] ,
( a 1 a 2 b 1 b 2 )=( i κ b cosθ κ τ +i κ b sinθ i κ g e i2δz 0 κ τ +i κ b sinθ i κ b cosθ 0 i κ g e i2δz i κ g e i2δz 0 i κ b cosθ κ τ i κ b sinθ 0 i κ g e i2δz κ τ i κ b sinθ i κ b cosθ )( a 1 a 2 b 1 b 2 ).
R 1,2 = | b 1,2 (0) | 2 | a 1 (0) | 2 + | a 2 (0) | 2 ,

Metrics