Abstract

We report measurements of the temperature dependence of the optical reflectivity, dR/dT of fifteen metallic elements at a wavelength of λ = 1.03 μm by time-domain thermoreflectance (TDTR); and the thermoreflectance of thin-films of Pt, Ta, Al, Au, SrRuO3, and LaNiO3 over the wavelength range 0.4 < λ < 1.6 μm using variable angle spectroscopic ellipsometry. At λ = 1.03 μm, Al, Ta, Re, Ru, have high values of thermoreflectance, dR/dT > 6∙10−5 K−1, and are good choices as optical transducers for TDTR experiments using a Yb:fiber laser oscillator. If low optical reflectivity and the associated high degree of steady-state heating are not a concern, LaNiO3 provides an exceptionally sensitive thermometer in the infrared; (1/R)(dR/dT) > 2.5∙10−4 K−1 in the wavelength range 0.85 < λ < 1.3 μm. This compilation of data will assist in the design and interpretation of optical pump-probe studies of thermal properties.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Cahill, “Analysis of heat flow in layered structures for time-domain thermoreflectance,” Rev. Sci. Instrum.75(12), 5119–5122 (2004).
    [CrossRef]
  2. A. J. Schmidt, R. Cheaito, and M. Chiesa, “A frequency-domain thermoreflectance method for the characterization of thermal properties,” Rev. Sci. Instrum.80(9), 094901–094906 (2009).
    [CrossRef] [PubMed]
  3. J. A. Malen, K. Baheti, T. Tong, Y. Zhao, J. A. Hudgings, and A. Majumdar, “Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance,” J. Heat Transfer133(8), 081601 (2011).
    [CrossRef]
  4. Y. K. Koh, Y. Cao, D. G. Cahill, and D. Jena, “Heat-transport mechanisms in superlattices,” Adv. Funct. Mater.19(4), 610–615 (2009).
    [CrossRef]
  5. C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, “Ultralow thermal conductivity in disordered, layered WSe2 crystals,” Science315(5810), 351–353 (2007).
    [CrossRef] [PubMed]
  6. Y. K. Koh and D. G. Cahill, “Frequency dependence of the thermal conductivity of semiconductor alloys,” Phys. Rev. B76(7), 075207 (2007).
    [CrossRef]
  7. A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen, “Thermal conductivity spectroscopy technique to measure phonon mean free paths,” Phys. Rev. Lett.107(9), 095901 (2011).
    [CrossRef] [PubMed]
  8. E. Colavita, A. Franciosi, C. Mariani, and R. Rosei, “Thermoreflectance test of W, Mo, and paramagnetic Cr band structures,” Phys. Rev. B27(8), 4684–4693 (1983).
    [CrossRef]
  9. R. Rosei and D. W. Lynch, “Thermomodulation Spectra of Al, Au, and Cu,” Phys. Rev. B5(10), 3883–3894 (1972).
    [CrossRef]
  10. R. Rosei, E. Colavita, A. Franciosi, J. H. Weaver, and D. T. Peterson, “Electronic structure of the bcc transition metals: thermoreflectance studies of bulk V, Nb, Ta, and αTaHx,” Phys. Rev. B21(8), 3152–3157 (1980).
    [CrossRef]
  11. W. J. Scouler, “Temperature-modulated reflectance of gold from 2 to 10 eV,” Phys. Rev. Lett.18(12), 445–448 (1967).
    [CrossRef]
  12. Y. Wang, J. Y. Park, Y. K. Koh, and D. G. Cahill, “Thermoreflectance of metal transducers for time-domain thermoreflectance,” J. Appl. Phys.108(4), 043507 (2010).
    [CrossRef]
  13. G. Tessier, S. Hole, and D. Fournier, “Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths,” Appl. Phys. Lett.78(16), 2267–2269 (2001).
    [CrossRef]
  14. M. Otter, “Temperaturabhängigkeit der optischen konstanten massiver metalle,”Zeitschrift für Physik A Hadrons and Nuclei 161, 539–549 (1961).
  15. W.-P. Hsieh and D. G. Cahill, “Ta and Au(Pd) alloy metal film transducers for time-domain thermoreflectance at high pressures,” J. Appl. Phys.109(11), 113520 (2011).
    [CrossRef]
  16. J. Alper and K. Hamad-Schifferli, “Effect of ligands on thermal dissipation from gold nanorods,” Langmuir26(6), 3786–3789 (2010).
    [CrossRef] [PubMed]
  17. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
    [CrossRef]
  18. S. Sato, “Nucleation properties of magnetron-sputtered tantalum,” Thin Solid Films94(4), 321–329 (1982).
    [CrossRef]
  19. K. Kang, Y. K. Koh, C. Chiritescu, X. Zheng, and D. G. Cahill, “Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters,” Rev. Sci. Instrum.79(11), 114901 (2008).
    [CrossRef] [PubMed]
  20. J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994).
    [CrossRef] [PubMed]
  21. Y. S. Touloukian, ed., Thermophysical Properties of Matter: Volume 14 (IFI/Plenum, 1979).
  22. J. H. Weaver and H. P. R. Frederikse, CRC Handbook of Chemistry and Physics (CRC Press, 1977)
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  24. B. Berini, W. Noun, Y. Dumont, E. Popova, and N. Keller, “High temperature ellipsometry of the conductive oxide LaNiO3,” J. Appl. Phys.101(2), 023527–023529 (2007).
    [CrossRef]
  25. J. M. Ziman, Electrons and Phonons (Oxford University Press, 1960)

2011

J. A. Malen, K. Baheti, T. Tong, Y. Zhao, J. A. Hudgings, and A. Majumdar, “Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance,” J. Heat Transfer133(8), 081601 (2011).
[CrossRef]

A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen, “Thermal conductivity spectroscopy technique to measure phonon mean free paths,” Phys. Rev. Lett.107(9), 095901 (2011).
[CrossRef] [PubMed]

W.-P. Hsieh and D. G. Cahill, “Ta and Au(Pd) alloy metal film transducers for time-domain thermoreflectance at high pressures,” J. Appl. Phys.109(11), 113520 (2011).
[CrossRef]

2010

J. Alper and K. Hamad-Schifferli, “Effect of ligands on thermal dissipation from gold nanorods,” Langmuir26(6), 3786–3789 (2010).
[CrossRef] [PubMed]

Y. Wang, J. Y. Park, Y. K. Koh, and D. G. Cahill, “Thermoreflectance of metal transducers for time-domain thermoreflectance,” J. Appl. Phys.108(4), 043507 (2010).
[CrossRef]

2009

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

A. J. Schmidt, R. Cheaito, and M. Chiesa, “A frequency-domain thermoreflectance method for the characterization of thermal properties,” Rev. Sci. Instrum.80(9), 094901–094906 (2009).
[CrossRef] [PubMed]

Y. K. Koh, Y. Cao, D. G. Cahill, and D. Jena, “Heat-transport mechanisms in superlattices,” Adv. Funct. Mater.19(4), 610–615 (2009).
[CrossRef]

2008

K. Kang, Y. K. Koh, C. Chiritescu, X. Zheng, and D. G. Cahill, “Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters,” Rev. Sci. Instrum.79(11), 114901 (2008).
[CrossRef] [PubMed]

2007

B. Berini, W. Noun, Y. Dumont, E. Popova, and N. Keller, “High temperature ellipsometry of the conductive oxide LaNiO3,” J. Appl. Phys.101(2), 023527–023529 (2007).
[CrossRef]

C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, “Ultralow thermal conductivity in disordered, layered WSe2 crystals,” Science315(5810), 351–353 (2007).
[CrossRef] [PubMed]

Y. K. Koh and D. G. Cahill, “Frequency dependence of the thermal conductivity of semiconductor alloys,” Phys. Rev. B76(7), 075207 (2007).
[CrossRef]

2004

D. G. Cahill, “Analysis of heat flow in layered structures for time-domain thermoreflectance,” Rev. Sci. Instrum.75(12), 5119–5122 (2004).
[CrossRef]

2001

G. Tessier, S. Hole, and D. Fournier, “Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths,” Appl. Phys. Lett.78(16), 2267–2269 (2001).
[CrossRef]

1994

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994).
[CrossRef] [PubMed]

1983

E. Colavita, A. Franciosi, C. Mariani, and R. Rosei, “Thermoreflectance test of W, Mo, and paramagnetic Cr band structures,” Phys. Rev. B27(8), 4684–4693 (1983).
[CrossRef]

1982

S. Sato, “Nucleation properties of magnetron-sputtered tantalum,” Thin Solid Films94(4), 321–329 (1982).
[CrossRef]

1980

R. Rosei, E. Colavita, A. Franciosi, J. H. Weaver, and D. T. Peterson, “Electronic structure of the bcc transition metals: thermoreflectance studies of bulk V, Nb, Ta, and αTaHx,” Phys. Rev. B21(8), 3152–3157 (1980).
[CrossRef]

1972

R. Rosei and D. W. Lynch, “Thermomodulation Spectra of Al, Au, and Cu,” Phys. Rev. B5(10), 3883–3894 (1972).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1967

W. J. Scouler, “Temperature-modulated reflectance of gold from 2 to 10 eV,” Phys. Rev. Lett.18(12), 445–448 (1967).
[CrossRef]

1961

M. Otter, “Temperaturabhängigkeit der optischen konstanten massiver metalle,”Zeitschrift für Physik A Hadrons and Nuclei 161, 539–549 (1961).

Alper, J.

J. Alper and K. Hamad-Schifferli, “Effect of ligands on thermal dissipation from gold nanorods,” Langmuir26(6), 3786–3789 (2010).
[CrossRef] [PubMed]

Baheti, K.

J. A. Malen, K. Baheti, T. Tong, Y. Zhao, J. A. Hudgings, and A. Majumdar, “Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance,” J. Heat Transfer133(8), 081601 (2011).
[CrossRef]

Berini, B.

B. Berini, W. Noun, Y. Dumont, E. Popova, and N. Keller, “High temperature ellipsometry of the conductive oxide LaNiO3,” J. Appl. Phys.101(2), 023527–023529 (2007).
[CrossRef]

Bodapati, A.

C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, “Ultralow thermal conductivity in disordered, layered WSe2 crystals,” Science315(5810), 351–353 (2007).
[CrossRef] [PubMed]

Cahill, D. G.

W.-P. Hsieh and D. G. Cahill, “Ta and Au(Pd) alloy metal film transducers for time-domain thermoreflectance at high pressures,” J. Appl. Phys.109(11), 113520 (2011).
[CrossRef]

Y. Wang, J. Y. Park, Y. K. Koh, and D. G. Cahill, “Thermoreflectance of metal transducers for time-domain thermoreflectance,” J. Appl. Phys.108(4), 043507 (2010).
[CrossRef]

Y. K. Koh, Y. Cao, D. G. Cahill, and D. Jena, “Heat-transport mechanisms in superlattices,” Adv. Funct. Mater.19(4), 610–615 (2009).
[CrossRef]

K. Kang, Y. K. Koh, C. Chiritescu, X. Zheng, and D. G. Cahill, “Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters,” Rev. Sci. Instrum.79(11), 114901 (2008).
[CrossRef] [PubMed]

Y. K. Koh and D. G. Cahill, “Frequency dependence of the thermal conductivity of semiconductor alloys,” Phys. Rev. B76(7), 075207 (2007).
[CrossRef]

C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, “Ultralow thermal conductivity in disordered, layered WSe2 crystals,” Science315(5810), 351–353 (2007).
[CrossRef] [PubMed]

D. G. Cahill, “Analysis of heat flow in layered structures for time-domain thermoreflectance,” Rev. Sci. Instrum.75(12), 5119–5122 (2004).
[CrossRef]

Cao, Y.

Y. K. Koh, Y. Cao, D. G. Cahill, and D. Jena, “Heat-transport mechanisms in superlattices,” Adv. Funct. Mater.19(4), 610–615 (2009).
[CrossRef]

Cheaito, R.

A. J. Schmidt, R. Cheaito, and M. Chiesa, “A frequency-domain thermoreflectance method for the characterization of thermal properties,” Rev. Sci. Instrum.80(9), 094901–094906 (2009).
[CrossRef] [PubMed]

Chen, G.

A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen, “Thermal conductivity spectroscopy technique to measure phonon mean free paths,” Phys. Rev. Lett.107(9), 095901 (2011).
[CrossRef] [PubMed]

Chiesa, M.

A. J. Schmidt, R. Cheaito, and M. Chiesa, “A frequency-domain thermoreflectance method for the characterization of thermal properties,” Rev. Sci. Instrum.80(9), 094901–094906 (2009).
[CrossRef] [PubMed]

Chiritescu, C.

K. Kang, Y. K. Koh, C. Chiritescu, X. Zheng, and D. G. Cahill, “Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters,” Rev. Sci. Instrum.79(11), 114901 (2008).
[CrossRef] [PubMed]

C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, “Ultralow thermal conductivity in disordered, layered WSe2 crystals,” Science315(5810), 351–353 (2007).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Colavita, E.

E. Colavita, A. Franciosi, C. Mariani, and R. Rosei, “Thermoreflectance test of W, Mo, and paramagnetic Cr band structures,” Phys. Rev. B27(8), 4684–4693 (1983).
[CrossRef]

R. Rosei, E. Colavita, A. Franciosi, J. H. Weaver, and D. T. Peterson, “Electronic structure of the bcc transition metals: thermoreflectance studies of bulk V, Nb, Ta, and αTaHx,” Phys. Rev. B21(8), 3152–3157 (1980).
[CrossRef]

Donnelly, V. M.

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994).
[CrossRef] [PubMed]

Dresselhaus, M. S.

A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen, “Thermal conductivity spectroscopy technique to measure phonon mean free paths,” Phys. Rev. Lett.107(9), 095901 (2011).
[CrossRef] [PubMed]

Dumont, Y.

B. Berini, W. Noun, Y. Dumont, E. Popova, and N. Keller, “High temperature ellipsometry of the conductive oxide LaNiO3,” J. Appl. Phys.101(2), 023527–023529 (2007).
[CrossRef]

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

Esfarjani, K.

A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen, “Thermal conductivity spectroscopy technique to measure phonon mean free paths,” Phys. Rev. Lett.107(9), 095901 (2011).
[CrossRef] [PubMed]

Fournier, D.

G. Tessier, S. Hole, and D. Fournier, “Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths,” Appl. Phys. Lett.78(16), 2267–2269 (2001).
[CrossRef]

Franciosi, A.

E. Colavita, A. Franciosi, C. Mariani, and R. Rosei, “Thermoreflectance test of W, Mo, and paramagnetic Cr band structures,” Phys. Rev. B27(8), 4684–4693 (1983).
[CrossRef]

R. Rosei, E. Colavita, A. Franciosi, J. H. Weaver, and D. T. Peterson, “Electronic structure of the bcc transition metals: thermoreflectance studies of bulk V, Nb, Ta, and αTaHx,” Phys. Rev. B21(8), 3152–3157 (1980).
[CrossRef]

Hamad-Schifferli, K.

J. Alper and K. Hamad-Schifferli, “Effect of ligands on thermal dissipation from gold nanorods,” Langmuir26(6), 3786–3789 (2010).
[CrossRef] [PubMed]

Hole, S.

G. Tessier, S. Hole, and D. Fournier, “Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths,” Appl. Phys. Lett.78(16), 2267–2269 (2001).
[CrossRef]

Hsieh, W.-P.

W.-P. Hsieh and D. G. Cahill, “Ta and Au(Pd) alloy metal film transducers for time-domain thermoreflectance at high pressures,” J. Appl. Phys.109(11), 113520 (2011).
[CrossRef]

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

Hudgings, J. A.

J. A. Malen, K. Baheti, T. Tong, Y. Zhao, J. A. Hudgings, and A. Majumdar, “Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance,” J. Heat Transfer133(8), 081601 (2011).
[CrossRef]

Jena, D.

Y. K. Koh, Y. Cao, D. G. Cahill, and D. Jena, “Heat-transport mechanisms in superlattices,” Adv. Funct. Mater.19(4), 610–615 (2009).
[CrossRef]

Johnson, D.

C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, “Ultralow thermal conductivity in disordered, layered WSe2 crystals,” Science315(5810), 351–353 (2007).
[CrossRef] [PubMed]

Johnson, J. A.

A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen, “Thermal conductivity spectroscopy technique to measure phonon mean free paths,” Phys. Rev. Lett.107(9), 095901 (2011).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kang, K.

K. Kang, Y. K. Koh, C. Chiritescu, X. Zheng, and D. G. Cahill, “Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters,” Rev. Sci. Instrum.79(11), 114901 (2008).
[CrossRef] [PubMed]

Keblinski, P.

C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, “Ultralow thermal conductivity in disordered, layered WSe2 crystals,” Science315(5810), 351–353 (2007).
[CrossRef] [PubMed]

Keller, N.

B. Berini, W. Noun, Y. Dumont, E. Popova, and N. Keller, “High temperature ellipsometry of the conductive oxide LaNiO3,” J. Appl. Phys.101(2), 023527–023529 (2007).
[CrossRef]

Koh, Y. K.

Y. Wang, J. Y. Park, Y. K. Koh, and D. G. Cahill, “Thermoreflectance of metal transducers for time-domain thermoreflectance,” J. Appl. Phys.108(4), 043507 (2010).
[CrossRef]

Y. K. Koh, Y. Cao, D. G. Cahill, and D. Jena, “Heat-transport mechanisms in superlattices,” Adv. Funct. Mater.19(4), 610–615 (2009).
[CrossRef]

K. Kang, Y. K. Koh, C. Chiritescu, X. Zheng, and D. G. Cahill, “Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters,” Rev. Sci. Instrum.79(11), 114901 (2008).
[CrossRef] [PubMed]

Y. K. Koh and D. G. Cahill, “Frequency dependence of the thermal conductivity of semiconductor alloys,” Phys. Rev. B76(7), 075207 (2007).
[CrossRef]

Lynch, D. W.

R. Rosei and D. W. Lynch, “Thermomodulation Spectra of Al, Au, and Cu,” Phys. Rev. B5(10), 3883–3894 (1972).
[CrossRef]

Majumdar, A.

J. A. Malen, K. Baheti, T. Tong, Y. Zhao, J. A. Hudgings, and A. Majumdar, “Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance,” J. Heat Transfer133(8), 081601 (2011).
[CrossRef]

Malen, J. A.

J. A. Malen, K. Baheti, T. Tong, Y. Zhao, J. A. Hudgings, and A. Majumdar, “Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance,” J. Heat Transfer133(8), 081601 (2011).
[CrossRef]

Mariani, C.

E. Colavita, A. Franciosi, C. Mariani, and R. Rosei, “Thermoreflectance test of W, Mo, and paramagnetic Cr band structures,” Phys. Rev. B27(8), 4684–4693 (1983).
[CrossRef]

McCaulley, J. A.

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994).
[CrossRef] [PubMed]

Minnich, A. J.

A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen, “Thermal conductivity spectroscopy technique to measure phonon mean free paths,” Phys. Rev. Lett.107(9), 095901 (2011).
[CrossRef] [PubMed]

Nelson, K. A.

A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen, “Thermal conductivity spectroscopy technique to measure phonon mean free paths,” Phys. Rev. Lett.107(9), 095901 (2011).
[CrossRef] [PubMed]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

Nguyen, N.

C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, “Ultralow thermal conductivity in disordered, layered WSe2 crystals,” Science315(5810), 351–353 (2007).
[CrossRef] [PubMed]

Noun, W.

B. Berini, W. Noun, Y. Dumont, E. Popova, and N. Keller, “High temperature ellipsometry of the conductive oxide LaNiO3,” J. Appl. Phys.101(2), 023527–023529 (2007).
[CrossRef]

Otter, M.

M. Otter, “Temperaturabhängigkeit der optischen konstanten massiver metalle,”Zeitschrift für Physik A Hadrons and Nuclei 161, 539–549 (1961).

Park, J. Y.

Y. Wang, J. Y. Park, Y. K. Koh, and D. G. Cahill, “Thermoreflectance of metal transducers for time-domain thermoreflectance,” J. Appl. Phys.108(4), 043507 (2010).
[CrossRef]

Peterson, D. T.

R. Rosei, E. Colavita, A. Franciosi, J. H. Weaver, and D. T. Peterson, “Electronic structure of the bcc transition metals: thermoreflectance studies of bulk V, Nb, Ta, and αTaHx,” Phys. Rev. B21(8), 3152–3157 (1980).
[CrossRef]

Popova, E.

B. Berini, W. Noun, Y. Dumont, E. Popova, and N. Keller, “High temperature ellipsometry of the conductive oxide LaNiO3,” J. Appl. Phys.101(2), 023527–023529 (2007).
[CrossRef]

Rosei, R.

E. Colavita, A. Franciosi, C. Mariani, and R. Rosei, “Thermoreflectance test of W, Mo, and paramagnetic Cr band structures,” Phys. Rev. B27(8), 4684–4693 (1983).
[CrossRef]

R. Rosei, E. Colavita, A. Franciosi, J. H. Weaver, and D. T. Peterson, “Electronic structure of the bcc transition metals: thermoreflectance studies of bulk V, Nb, Ta, and αTaHx,” Phys. Rev. B21(8), 3152–3157 (1980).
[CrossRef]

R. Rosei and D. W. Lynch, “Thermomodulation Spectra of Al, Au, and Cu,” Phys. Rev. B5(10), 3883–3894 (1972).
[CrossRef]

Sato, S.

S. Sato, “Nucleation properties of magnetron-sputtered tantalum,” Thin Solid Films94(4), 321–329 (1982).
[CrossRef]

Schmidt, A. J.

A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen, “Thermal conductivity spectroscopy technique to measure phonon mean free paths,” Phys. Rev. Lett.107(9), 095901 (2011).
[CrossRef] [PubMed]

A. J. Schmidt, R. Cheaito, and M. Chiesa, “A frequency-domain thermoreflectance method for the characterization of thermal properties,” Rev. Sci. Instrum.80(9), 094901–094906 (2009).
[CrossRef] [PubMed]

Scouler, W. J.

W. J. Scouler, “Temperature-modulated reflectance of gold from 2 to 10 eV,” Phys. Rev. Lett.18(12), 445–448 (1967).
[CrossRef]

Taha, I.

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994).
[CrossRef] [PubMed]

Tessier, G.

G. Tessier, S. Hole, and D. Fournier, “Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths,” Appl. Phys. Lett.78(16), 2267–2269 (2001).
[CrossRef]

Tong, T.

J. A. Malen, K. Baheti, T. Tong, Y. Zhao, J. A. Hudgings, and A. Majumdar, “Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance,” J. Heat Transfer133(8), 081601 (2011).
[CrossRef]

Vernon, M.

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, J. Y. Park, Y. K. Koh, and D. G. Cahill, “Thermoreflectance of metal transducers for time-domain thermoreflectance,” J. Appl. Phys.108(4), 043507 (2010).
[CrossRef]

Weaver, J. H.

R. Rosei, E. Colavita, A. Franciosi, J. H. Weaver, and D. T. Peterson, “Electronic structure of the bcc transition metals: thermoreflectance studies of bulk V, Nb, Ta, and αTaHx,” Phys. Rev. B21(8), 3152–3157 (1980).
[CrossRef]

Zhao, Y.

J. A. Malen, K. Baheti, T. Tong, Y. Zhao, J. A. Hudgings, and A. Majumdar, “Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance,” J. Heat Transfer133(8), 081601 (2011).
[CrossRef]

Zheng, X.

K. Kang, Y. K. Koh, C. Chiritescu, X. Zheng, and D. G. Cahill, “Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters,” Rev. Sci. Instrum.79(11), 114901 (2008).
[CrossRef] [PubMed]

Zschack, P.

C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, “Ultralow thermal conductivity in disordered, layered WSe2 crystals,” Science315(5810), 351–353 (2007).
[CrossRef] [PubMed]

Adv. Funct. Mater.

Y. K. Koh, Y. Cao, D. G. Cahill, and D. Jena, “Heat-transport mechanisms in superlattices,” Adv. Funct. Mater.19(4), 610–615 (2009).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

Appl. Phys. Lett.

G. Tessier, S. Hole, and D. Fournier, “Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths,” Appl. Phys. Lett.78(16), 2267–2269 (2001).
[CrossRef]

J. Appl. Phys.

W.-P. Hsieh and D. G. Cahill, “Ta and Au(Pd) alloy metal film transducers for time-domain thermoreflectance at high pressures,” J. Appl. Phys.109(11), 113520 (2011).
[CrossRef]

Y. Wang, J. Y. Park, Y. K. Koh, and D. G. Cahill, “Thermoreflectance of metal transducers for time-domain thermoreflectance,” J. Appl. Phys.108(4), 043507 (2010).
[CrossRef]

B. Berini, W. Noun, Y. Dumont, E. Popova, and N. Keller, “High temperature ellipsometry of the conductive oxide LaNiO3,” J. Appl. Phys.101(2), 023527–023529 (2007).
[CrossRef]

J. Heat Transfer

J. A. Malen, K. Baheti, T. Tong, Y. Zhao, J. A. Hudgings, and A. Majumdar, “Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance,” J. Heat Transfer133(8), 081601 (2011).
[CrossRef]

Langmuir

J. Alper and K. Hamad-Schifferli, “Effect of ligands on thermal dissipation from gold nanorods,” Langmuir26(6), 3786–3789 (2010).
[CrossRef] [PubMed]

Phys. Rev. B

Y. K. Koh and D. G. Cahill, “Frequency dependence of the thermal conductivity of semiconductor alloys,” Phys. Rev. B76(7), 075207 (2007).
[CrossRef]

E. Colavita, A. Franciosi, C. Mariani, and R. Rosei, “Thermoreflectance test of W, Mo, and paramagnetic Cr band structures,” Phys. Rev. B27(8), 4684–4693 (1983).
[CrossRef]

R. Rosei and D. W. Lynch, “Thermomodulation Spectra of Al, Au, and Cu,” Phys. Rev. B5(10), 3883–3894 (1972).
[CrossRef]

R. Rosei, E. Colavita, A. Franciosi, J. H. Weaver, and D. T. Peterson, “Electronic structure of the bcc transition metals: thermoreflectance studies of bulk V, Nb, Ta, and αTaHx,” Phys. Rev. B21(8), 3152–3157 (1980).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. B Condens. Matter

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett.

W. J. Scouler, “Temperature-modulated reflectance of gold from 2 to 10 eV,” Phys. Rev. Lett.18(12), 445–448 (1967).
[CrossRef]

A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen, “Thermal conductivity spectroscopy technique to measure phonon mean free paths,” Phys. Rev. Lett.107(9), 095901 (2011).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

D. G. Cahill, “Analysis of heat flow in layered structures for time-domain thermoreflectance,” Rev. Sci. Instrum.75(12), 5119–5122 (2004).
[CrossRef]

A. J. Schmidt, R. Cheaito, and M. Chiesa, “A frequency-domain thermoreflectance method for the characterization of thermal properties,” Rev. Sci. Instrum.80(9), 094901–094906 (2009).
[CrossRef] [PubMed]

K. Kang, Y. K. Koh, C. Chiritescu, X. Zheng, and D. G. Cahill, “Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters,” Rev. Sci. Instrum.79(11), 114901 (2008).
[CrossRef] [PubMed]

Science

C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, “Ultralow thermal conductivity in disordered, layered WSe2 crystals,” Science315(5810), 351–353 (2007).
[CrossRef] [PubMed]

Thin Solid Films

S. Sato, “Nucleation properties of magnetron-sputtered tantalum,” Thin Solid Films94(4), 321–329 (1982).
[CrossRef]

Zeitschrift für Physik A Hadrons and Nuclei

M. Otter, “Temperaturabhängigkeit der optischen konstanten massiver metalle,”Zeitschrift für Physik A Hadrons and Nuclei 161, 539–549 (1961).

Other

Y. S. Touloukian, ed., Thermophysical Properties of Matter: Volume 14 (IFI/Plenum, 1979).

J. H. Weaver and H. P. R. Frederikse, CRC Handbook of Chemistry and Physics (CRC Press, 1977)

J. M. Ziman, Electrons and Phonons (Oxford University Press, 1960)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig.
       1
Fig. 1

(a) Thermoreflectance data as function of pump-probe delay time for a 80 nm sputtered thin-film of Al on Si (circles, labeled Al-tf), high purity bulk Ta (squares) and high purity bulk Ru (triangles). The in-phase or real part of V(t) is plotted as solid symbols and the out-of-phase or imaginary part of V(t) is plotted as open symbols. The lines are the real and imaginary parts pre-dicted by the right hand side of Eq. (1) with dR/dT=6.4× 10 5 K 1 , dR/dT=1.4× 10 4 K 1 , and dR/dT=1.5× 10 4 K 1 for Al, Ta, and Ru, respectively. (b) Schematic of the optical layout for the TDTR measurements.

Fig.
       2
Fig. 2

(a) Absolute value of the signal detected by the rf lock-in in the TDTR measurements at a time-delay between pump and probe of t=300 ps. The laser source is an Yb:fiber oscillator operating at a wavelength of 1.03 μm . The average pump and probe powers are 16 and 8 mW respectively. (b) Absolute value of the thermoreflectance based on the signal strength plotted in panel (a) in combination with Eq. (1). Filled circles denote negative values of dR/dT and open circles denote positive values of dR/dT . Thin-film samples have the tag “-tf” added to the name of the element.

Fig.
       3
Fig. 3

Room temperature real (solid lines) and imaginary (dashed lines) part of the index of refraction of SrRuO3 and LaNiO3 metallic oxide films as function of wavelength between 0.4 and 1.6 μm.

Fig.
       4
Fig. 4

Temperature coefficient of the real (a) and imaginary (b) part of the index of refraction for Pt, Au, SrRuO3 and LaNiO3 metal films. The triangles are data taken from Ref. 14, and the circles are data taken from Ref. 22. Filled symbols denote negative values and open symbols denote positive values.

Fig. 5
Fig. 5

Absorbance (a) and thermoreflectance measured by spectroscopic ellipsometry for Pt, Ta, Al, and Au metal films (b) and SrRuO3 and LaNiO3 metallic oxide films (c). Solid lines indicate positive values and dashed lines indicate negative values. The circles, squares, up-triangles, and down-triangles represent the TDTR measured absorbance and thermoreflectance values for the Pt, Ta, Al, and Au films at 0.785 and 1.03 µm. Filled symbols denote negative thermoreflectance values and open symbols denote positive values. The data point for the TDTR measured thermoreflectance of Al at 0.785 µm is partially obscured by the Ta data point.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V(t)= G 2 2 V 0 R dR dT ΔT(t),

Metrics