Abstract

A rectangular-core (ribbon) fiber that guides and amplifies a single higher-order-mode (HOM) can potentially scale to much higher average powers than what is possible in traditional circular-core large-mode-area fibers. Such an amplifier would require mode-conversion at the input to enable interfacing with seed sources that typically output TEM00 mode radiation and at the output to generate diffraction-limited radiation for end-user applications. We present the first simulation and experimental results of a mode conversion technique that uses two diffractive-optic-elements in conjugate Fourier planes to convert a diffraction limited TEM00 mode to the HOM of a ribbon fiber. Mode-conversion-efficiency is approximately 84% and can theoretically approach 100%. We also demonstrate a mode-converter system that converts a single HOM of a ribbon fiber back to a diffraction-limited TEM00 mode. Conversion efficiency is a record 80.5%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
    [CrossRef]
  2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16, 13240–13266 (2008).
    [CrossRef] [PubMed]
  3. R. J. Beach, M. D. Feit, R. H. Page, L. D. Brasure, R. Wilcox, and S. A. Payne, “Scalable antiguided ribbon laser,” J. Opt. Soc. Am. B19, 1521–1534 (2002).
    [CrossRef]
  4. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
    [CrossRef]
  5. A. L. Bullington, P. H. Pax, A. K. Sridharan, J. E. Heebner, M. J. Messerly, and J. W. Dawson, “Mode conversion in rectangular-core optical fibers,” Appl. Opt.51, 84–88 (2012).
    [CrossRef] [PubMed]
  6. A. A. Ishaaya, G. Machavariani, N. Davidson, and A. A. Friesem, “Conversion of a high-order mode beam into a nearly gaussian beam by use of a single interferometric element,” Opt. Lett.28, 504–506 (2003).
    [CrossRef] [PubMed]
  7. M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” Journal of Optics A: Pure and Appl. Opt.10, 115304–115307 (2008).
    [CrossRef]
  8. N. Davidson, A. A. Friesem, and E. Hasman, “Diffractive elements for annular laser beam transformation,” Appl. Phys. Lett.61, 381–383 (1992).
    [CrossRef]
  9. A. E. Siegman, “Binary phase plates cannot improve laser beam quality,” Opt. Lett.18, 675–677 (1993).
    [CrossRef] [PubMed]
  10. N. Lindlein, G. Leuchs, and S. Ramachandran, “Achieving gaussian outputs from large-mode-area higher-order-mode fibers,” Appl. Opt.46, 5147–5157 (2007).
    [CrossRef] [PubMed]
  11. R. Oron, N. Davidson, and A. A. Friesem, “Continuous-phase elements can improve laser beam quality,” Opt. Lett.25, 939–941 (2000).
    [CrossRef]
  12. G. Hergenhan, B. Lucke, and U. Brauch, “Coherent coupling of vertical-cavity surface-emitting laser arrays and efficient beam combining by diffractive optical elements:concept and experimental verification,” Appl. Opt.42, 1667–1680 (2003).
    [CrossRef] [PubMed]
  13. M. Khajavikhan, A. Hoyer-Leitzel, and J. R. Leger, “Efficient conversion of light from sparse laser arrays into single-lobed far field using phase structures,” Opt. Lett.33, 2377–2379 (2008).
    [CrossRef] [PubMed]
  14. J. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21, 2758–2769 (1982).
    [CrossRef] [PubMed]
  15. G. Zhou, Y. Chen, Z. Wang, and H. Song, “Genetic local search algorithm for optimization design of diffractive optical elements,” Appl. Opt.38, 4281–4290 (1999).
    [CrossRef]
  16. J. M. Herrera-Fernandez and L. M. Sanchez-Brea, “Double diffractive optical element system for near-field shaping,” Appl. Opt.50, 4587–4593 (2011).
    [CrossRef] [PubMed]

2012

2011

2008

M. Khajavikhan, A. Hoyer-Leitzel, and J. R. Leger, “Efficient conversion of light from sparse laser arrays into single-lobed far field using phase structures,” Opt. Lett.33, 2377–2379 (2008).
[CrossRef] [PubMed]

M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” Journal of Optics A: Pure and Appl. Opt.10, 115304–115307 (2008).
[CrossRef]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16, 13240–13266 (2008).
[CrossRef] [PubMed]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

2007

2005

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

2003

2002

2000

1999

1993

1992

N. Davidson, A. A. Friesem, and E. Hasman, “Diffractive elements for annular laser beam transformation,” Appl. Phys. Lett.61, 381–383 (1992).
[CrossRef]

1982

Barty, C.

Beach, R. J.

Brasure, L. D.

Brauch, U.

Bullington, A. L.

Chen, M.-Y.

M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” Journal of Optics A: Pure and Appl. Opt.10, 115304–115307 (2008).
[CrossRef]

Chen, Y.

Davidson, N.

Dawson, J. W.

Feit, M. D.

Fienup, J.

Fini, J. M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

Friesem, A. A.

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

Hasman, E.

N. Davidson, A. A. Friesem, and E. Hasman, “Diffractive elements for annular laser beam transformation,” Appl. Phys. Lett.61, 381–383 (1992).
[CrossRef]

Heebner, J. E.

Hergenhan, G.

Herrera-Fernandez, J. M.

Höfer, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Hoyer-Leitzel, A.

Ishaaya, A. A.

Khajavikhan, M.

Leger, J. R.

Leuchs, G.

Liem, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Limpert, J.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Lindlein, N.

Lucke, B.

Machavariani, G.

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

Messerly, M. J.

Nicholson, J. W.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

Nolte, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Oron, R.

Page, R. H.

Pax, P. H.

Payne, S. A.

Ramachandran, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

N. Lindlein, G. Leuchs, and S. Ramachandran, “Achieving gaussian outputs from large-mode-area higher-order-mode fibers,” Appl. Opt.46, 5147–5157 (2007).
[CrossRef] [PubMed]

Röser, F.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Sanchez-Brea, L. M.

Schreiber, T.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Shverdin, M. Y.

Siders, C. W.

Siegman, A. E.

Song, H.

Sridharan, A. K.

Stappaerts, E. A.

Tünnermann, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Wang, Z.

Wilcox, R.

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

Zhou, G.

Zhou, J.

M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” Journal of Optics A: Pure and Appl. Opt.10, 115304–115307 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

N. Davidson, A. A. Friesem, and E. Hasman, “Diffractive elements for annular laser beam transformation,” Appl. Phys. Lett.61, 381–383 (1992).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Journal of Optics A: Pure and Appl. Opt.

M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” Journal of Optics A: Pure and Appl. Opt.10, 115304–115307 (2008).
[CrossRef]

Laser Photon. Rev.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A magnified image of sample ribbon fiber’s facet.

Fig. 2
Fig. 2

Illustration of the mode-conversion scheme to convert a TEM00 mode to the 7th eigen-mode of a rectangular-core fiber.

Fig. 3
Fig. 3

(a) Input mode’s amplitude (b) Target 7-lobed mode’s amplitude (c) DOE 1 phase profile (d) DOE 2 phase profile

Fig. 4
Fig. 4

Experimental setup of the mode-converter system which uses two spatial light modulators as diffractive optic elements to impress the correct phase onto the propagating mode.

Fig. 5
Fig. 5

Camera images of the intensities after SLM-2: (a) in the far-field and (b) in the near-field. Corresponding intensity-profiles in the (c) far-field and (d) near-field, are also shown.

Fig. 6
Fig. 6

Electric field amplitudes and retrieved phases corresponding to the experimentally measured intensity profiles (Fig. 5) in the (a) far-field of SLM-2 and (b) near-field after SLM-2

Fig. 7
Fig. 7

Experimental schematic of the mode-converter system which uses two diffractive optic elements.

Fig. 8
Fig. 8

Phase profiles of (a) SLM-1 (b) and SLM-2.

Fig. 9
Fig. 9

Camera images at the (a) input of SLM-2 (c) and its far-field. Corresponding intensity-profiles are shown in (b) and (d).

Metrics