Abstract

A rectangular-core (ribbon) fiber that guides and amplifies a single higher-order-mode (HOM) can potentially scale to much higher average powers than what is possible in traditional circular-core large-mode-area fibers. Such an amplifier would require mode-conversion at the input to enable interfacing with seed sources that typically output TEM00 mode radiation and at the output to generate diffraction-limited radiation for end-user applications. We present the first simulation and experimental results of a mode conversion technique that uses two diffractive-optic-elements in conjugate Fourier planes to convert a diffraction limited TEM00 mode to the HOM of a ribbon fiber. Mode-conversion-efficiency is approximately 84% and can theoretically approach 100%. We also demonstrate a mode-converter system that converts a single HOM of a ribbon fiber back to a diffraction-limited TEM00 mode. Conversion efficiency is a record 80.5%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
    [CrossRef]
  2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16, 13240–13266 (2008).
    [CrossRef] [PubMed]
  3. R. J. Beach, M. D. Feit, R. H. Page, L. D. Brasure, R. Wilcox, and S. A. Payne, “Scalable antiguided ribbon laser,” J. Opt. Soc. Am. B19, 1521–1534 (2002).
    [CrossRef]
  4. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
    [CrossRef]
  5. A. L. Bullington, P. H. Pax, A. K. Sridharan, J. E. Heebner, M. J. Messerly, and J. W. Dawson, “Mode conversion in rectangular-core optical fibers,” Appl. Opt.51, 84–88 (2012).
    [CrossRef] [PubMed]
  6. A. A. Ishaaya, G. Machavariani, N. Davidson, and A. A. Friesem, “Conversion of a high-order mode beam into a nearly gaussian beam by use of a single interferometric element,” Opt. Lett.28, 504–506 (2003).
    [CrossRef] [PubMed]
  7. M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” Journal of Optics A: Pure and Appl. Opt.10, 115304–115307 (2008).
    [CrossRef]
  8. N. Davidson, A. A. Friesem, and E. Hasman, “Diffractive elements for annular laser beam transformation,” Appl. Phys. Lett.61, 381–383 (1992).
    [CrossRef]
  9. A. E. Siegman, “Binary phase plates cannot improve laser beam quality,” Opt. Lett.18, 675–677 (1993).
    [CrossRef] [PubMed]
  10. N. Lindlein, G. Leuchs, and S. Ramachandran, “Achieving gaussian outputs from large-mode-area higher-order-mode fibers,” Appl. Opt.46, 5147–5157 (2007).
    [CrossRef] [PubMed]
  11. R. Oron, N. Davidson, and A. A. Friesem, “Continuous-phase elements can improve laser beam quality,” Opt. Lett.25, 939–941 (2000).
    [CrossRef]
  12. G. Hergenhan, B. Lucke, and U. Brauch, “Coherent coupling of vertical-cavity surface-emitting laser arrays and efficient beam combining by diffractive optical elements:concept and experimental verification,” Appl. Opt.42, 1667–1680 (2003).
    [CrossRef] [PubMed]
  13. M. Khajavikhan, A. Hoyer-Leitzel, and J. R. Leger, “Efficient conversion of light from sparse laser arrays into single-lobed far field using phase structures,” Opt. Lett.33, 2377–2379 (2008).
    [CrossRef] [PubMed]
  14. J. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21, 2758–2769 (1982).
    [CrossRef] [PubMed]
  15. G. Zhou, Y. Chen, Z. Wang, and H. Song, “Genetic local search algorithm for optimization design of diffractive optical elements,” Appl. Opt.38, 4281–4290 (1999).
    [CrossRef]
  16. J. M. Herrera-Fernandez and L. M. Sanchez-Brea, “Double diffractive optical element system for near-field shaping,” Appl. Opt.50, 4587–4593 (2011).
    [CrossRef] [PubMed]

2012 (1)

2011 (1)

2008 (4)

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16, 13240–13266 (2008).
[CrossRef] [PubMed]

M. Khajavikhan, A. Hoyer-Leitzel, and J. R. Leger, “Efficient conversion of light from sparse laser arrays into single-lobed far field using phase structures,” Opt. Lett.33, 2377–2379 (2008).
[CrossRef] [PubMed]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” Journal of Optics A: Pure and Appl. Opt.10, 115304–115307 (2008).
[CrossRef]

2007 (1)

2005 (1)

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

2003 (2)

2002 (1)

2000 (1)

1999 (1)

1993 (1)

1992 (1)

N. Davidson, A. A. Friesem, and E. Hasman, “Diffractive elements for annular laser beam transformation,” Appl. Phys. Lett.61, 381–383 (1992).
[CrossRef]

1982 (1)

Barty, C.

Beach, R. J.

Brasure, L. D.

Brauch, U.

Bullington, A. L.

Chen, M.-Y.

M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” Journal of Optics A: Pure and Appl. Opt.10, 115304–115307 (2008).
[CrossRef]

Chen, Y.

Davidson, N.

Dawson, J. W.

Feit, M. D.

Fienup, J.

Fini, J. M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

Friesem, A. A.

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

Hasman, E.

N. Davidson, A. A. Friesem, and E. Hasman, “Diffractive elements for annular laser beam transformation,” Appl. Phys. Lett.61, 381–383 (1992).
[CrossRef]

Heebner, J. E.

Hergenhan, G.

Herrera-Fernandez, J. M.

Höfer, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Hoyer-Leitzel, A.

Ishaaya, A. A.

Khajavikhan, M.

Leger, J. R.

Leuchs, G.

Liem, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Limpert, J.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Lindlein, N.

Lucke, B.

Machavariani, G.

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

Messerly, M. J.

Nicholson, J. W.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

Nolte, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Oron, R.

Page, R. H.

Pax, P. H.

Payne, S. A.

Ramachandran, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

N. Lindlein, G. Leuchs, and S. Ramachandran, “Achieving gaussian outputs from large-mode-area higher-order-mode fibers,” Appl. Opt.46, 5147–5157 (2007).
[CrossRef] [PubMed]

Röser, F.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Sanchez-Brea, L. M.

Schreiber, T.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Shverdin, M. Y.

Siders, C. W.

Siegman, A. E.

Song, H.

Sridharan, A. K.

Stappaerts, E. A.

Tünnermann, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Wang, Z.

Wilcox, R.

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

Zhou, G.

Zhou, J.

M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” Journal of Optics A: Pure and Appl. Opt.10, 115304–115307 (2008).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

N. Davidson, A. A. Friesem, and E. Hasman, “Diffractive elements for annular laser beam transformation,” Appl. Phys. Lett.61, 381–383 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005).
[CrossRef]

Journal of Optics A: Pure and Appl. Opt. (1)

M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” Journal of Optics A: Pure and Appl. Opt.10, 115304–115307 (2008).
[CrossRef]

Laser Photon. Rev. (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A magnified image of sample ribbon fiber’s facet.

Fig. 2
Fig. 2

Illustration of the mode-conversion scheme to convert a TEM00 mode to the 7th eigen-mode of a rectangular-core fiber.

Fig. 3
Fig. 3

(a) Input mode’s amplitude (b) Target 7-lobed mode’s amplitude (c) DOE 1 phase profile (d) DOE 2 phase profile

Fig. 4
Fig. 4

Experimental setup of the mode-converter system which uses two spatial light modulators as diffractive optic elements to impress the correct phase onto the propagating mode.

Fig. 5
Fig. 5

Camera images of the intensities after SLM-2: (a) in the far-field and (b) in the near-field. Corresponding intensity-profiles in the (c) far-field and (d) near-field, are also shown.

Fig. 6
Fig. 6

Electric field amplitudes and retrieved phases corresponding to the experimentally measured intensity profiles (Fig. 5) in the (a) far-field of SLM-2 and (b) near-field after SLM-2

Fig. 7
Fig. 7

Experimental schematic of the mode-converter system which uses two diffractive optic elements.

Fig. 8
Fig. 8

Phase profiles of (a) SLM-1 (b) and SLM-2.

Fig. 9
Fig. 9

Camera images at the (a) input of SLM-2 (c) and its far-field. Corresponding intensity-profiles are shown in (b) and (d).

Metrics