Abstract

We propose a new 16QAM optical transmitter based on a combination of a dual-drive Mach-Zehnder modulator (DD-MZM) and a dual-parallel Mach-Zehnder modulator (DP-MZM) with electrical binary drive signals. For 16QAM generation, two arms of DD-MZM are independently driven by two different binary data, and consequently, the DD-MZM produces an offset square 4QAM of the 16QAM constellation. This 4QAM signal is then switched over other quadrants through a typical QPSK modulation scheme by the following DP-MZM, and resulting in 16QAM. By using the proposed transmitter together with a digital coherent receiver, we successfully demonstrate the 224-Gb/s and 320-Gb/s PDM-RZ-16QAM systems. Their OSNR sensitivities at 3.8x10−3 BER are observed to be 19.8 dB and 23 dB, respectively.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proceedings of ECOC2010, paper PD2.2 (2010).
  2. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol.29(4), 373–377 (2011).
    [CrossRef]
  3. M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11x224-Gb/s POLMUX-RZ-16QAM transmission over 670 km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett.22(15), 1150–1152 (2010).
    [CrossRef]
  4. M. Nakamura, Y. Kamio, and T. Miyazaki, “Experimental demonstration of 16-QAM transmission with a single dual-drive Mach-Zehnder modulator,” in Proceedings of OFC/NFOEC2011, paper JThA42 (2011).
  5. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection,” in Proceedings of OFC/NFOEC2010, paper PDPB7 (2010).
  6. G.-W. Lu, M. Sköld, P. Johannisson, J. Zhao, M. Sjödin, H. Sunnerud, M. Westlund, A. Ellis, and P. A. Andrekson, “40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals,” Opt. Express18(22), 23062–23069 (2010).
    [CrossRef] [PubMed]
  7. X. Zhou and J. Yu, “200-Gb/s PDM-16QAM generation using a new synthesizing method,” in Proceedings of ECOC2009, paper 10.3.5 (2009).
  8. H. Y. Choi, T. Tsuritani, and I. Morita, “A novel transmitter for 320-Gb/s PDM-RZ-16QAM generation using electrical binary drive signals,” in Proceedings of ECOC2012, paper Tu.4.A.2 (2012).
  9. H. Y. Choi, T. Tsuritani, and I. Morita, “BER-adaptive flexible-format transmitter for elastic optical networks,” Opt. Express20(17), 18652–18658 (2012).
    [CrossRef] [PubMed]
  10. H. Y. Choi, T. Tsuritani, H. Takahashi, W. Peng, and I. Morita, “Generation and detection of 240-Gb/s PDM-64QAM using optical binary synthesizing approach and phase-folded decision-directed equalization,” Opt. Express (to be published).
  11. H. Y. Choi, T. Tsuritani, and I. Morita, “Effects of LN modulator chirp on performance of digital coherent optical transmission system,” in Proceedings of COIN2012, paper TuF.2 (2012).
  12. G. Picchi and G. Prati, “Blind equalization and carrier recovery using a “stop-and-go” decision-directed algorithm,” IEEE Trans. Commun.35(9), 877–887 (1987).
    [CrossRef]
  13. J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, New York, 2001).
  14. ITU-T Recommendation G.975.1 2004, Appendix I.9.

2012 (1)

2011 (1)

2010 (2)

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11x224-Gb/s POLMUX-RZ-16QAM transmission over 670 km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett.22(15), 1150–1152 (2010).
[CrossRef]

G.-W. Lu, M. Sköld, P. Johannisson, J. Zhao, M. Sjödin, H. Sunnerud, M. Westlund, A. Ellis, and P. A. Andrekson, “40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals,” Opt. Express18(22), 23062–23069 (2010).
[CrossRef] [PubMed]

1987 (1)

G. Picchi and G. Prati, “Blind equalization and carrier recovery using a “stop-and-go” decision-directed algorithm,” IEEE Trans. Commun.35(9), 877–887 (1987).
[CrossRef]

Alfiad, M. S.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11x224-Gb/s POLMUX-RZ-16QAM transmission over 670 km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett.22(15), 1150–1152 (2010).
[CrossRef]

Andrekson, P. A.

Chandrasekhar, S.

Choi, H. Y.

H. Y. Choi, T. Tsuritani, and I. Morita, “BER-adaptive flexible-format transmitter for elastic optical networks,” Opt. Express20(17), 18652–18658 (2012).
[CrossRef] [PubMed]

H. Y. Choi, T. Tsuritani, H. Takahashi, W. Peng, and I. Morita, “Generation and detection of 240-Gb/s PDM-64QAM using optical binary synthesizing approach and phase-folded decision-directed equalization,” Opt. Express (to be published).

de Waardt, H.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11x224-Gb/s POLMUX-RZ-16QAM transmission over 670 km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett.22(15), 1150–1152 (2010).
[CrossRef]

Ellis, A.

Gnauck, A. H.

Jansen, S. L.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11x224-Gb/s POLMUX-RZ-16QAM transmission over 670 km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett.22(15), 1150–1152 (2010).
[CrossRef]

Johannisson, P.

Kuschnerov, M.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11x224-Gb/s POLMUX-RZ-16QAM transmission over 670 km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett.22(15), 1150–1152 (2010).
[CrossRef]

Liu, X.

Lu, G.-W.

Morita, I.

H. Y. Choi, T. Tsuritani, and I. Morita, “BER-adaptive flexible-format transmitter for elastic optical networks,” Opt. Express20(17), 18652–18658 (2012).
[CrossRef] [PubMed]

H. Y. Choi, T. Tsuritani, H. Takahashi, W. Peng, and I. Morita, “Generation and detection of 240-Gb/s PDM-64QAM using optical binary synthesizing approach and phase-folded decision-directed equalization,” Opt. Express (to be published).

Peckham, D. W.

Peng, W.

H. Y. Choi, T. Tsuritani, H. Takahashi, W. Peng, and I. Morita, “Generation and detection of 240-Gb/s PDM-64QAM using optical binary synthesizing approach and phase-folded decision-directed equalization,” Opt. Express (to be published).

Picchi, G.

G. Picchi and G. Prati, “Blind equalization and carrier recovery using a “stop-and-go” decision-directed algorithm,” IEEE Trans. Commun.35(9), 877–887 (1987).
[CrossRef]

Prati, G.

G. Picchi and G. Prati, “Blind equalization and carrier recovery using a “stop-and-go” decision-directed algorithm,” IEEE Trans. Commun.35(9), 877–887 (1987).
[CrossRef]

Sjödin, M.

Sköld, M.

Sunnerud, H.

Takahashi, H.

H. Y. Choi, T. Tsuritani, H. Takahashi, W. Peng, and I. Morita, “Generation and detection of 240-Gb/s PDM-64QAM using optical binary synthesizing approach and phase-folded decision-directed equalization,” Opt. Express (to be published).

Tsuritani, T.

H. Y. Choi, T. Tsuritani, and I. Morita, “BER-adaptive flexible-format transmitter for elastic optical networks,” Opt. Express20(17), 18652–18658 (2012).
[CrossRef] [PubMed]

H. Y. Choi, T. Tsuritani, H. Takahashi, W. Peng, and I. Morita, “Generation and detection of 240-Gb/s PDM-64QAM using optical binary synthesizing approach and phase-folded decision-directed equalization,” Opt. Express (to be published).

van den Borne, D.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11x224-Gb/s POLMUX-RZ-16QAM transmission over 670 km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett.22(15), 1150–1152 (2010).
[CrossRef]

Westlund, M.

Winzer, P. J.

Wuth, T.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11x224-Gb/s POLMUX-RZ-16QAM transmission over 670 km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett.22(15), 1150–1152 (2010).
[CrossRef]

Zhao, J.

Zhu, B.

IEEE Photon. Technol. Lett. (1)

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11x224-Gb/s POLMUX-RZ-16QAM transmission over 670 km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett.22(15), 1150–1152 (2010).
[CrossRef]

IEEE Trans. Commun. (1)

G. Picchi and G. Prati, “Blind equalization and carrier recovery using a “stop-and-go” decision-directed algorithm,” IEEE Trans. Commun.35(9), 877–887 (1987).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (3)

Other (8)

H. Y. Choi, T. Tsuritani, and I. Morita, “Effects of LN modulator chirp on performance of digital coherent optical transmission system,” in Proceedings of COIN2012, paper TuF.2 (2012).

X. Zhou and J. Yu, “200-Gb/s PDM-16QAM generation using a new synthesizing method,” in Proceedings of ECOC2009, paper 10.3.5 (2009).

H. Y. Choi, T. Tsuritani, and I. Morita, “A novel transmitter for 320-Gb/s PDM-RZ-16QAM generation using electrical binary drive signals,” in Proceedings of ECOC2012, paper Tu.4.A.2 (2012).

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proceedings of ECOC2010, paper PD2.2 (2010).

M. Nakamura, Y. Kamio, and T. Miyazaki, “Experimental demonstration of 16-QAM transmission with a single dual-drive Mach-Zehnder modulator,” in Proceedings of OFC/NFOEC2011, paper JThA42 (2011).

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection,” in Proceedings of OFC/NFOEC2010, paper PDPB7 (2010).

J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, New York, 2001).

ITU-T Recommendation G.975.1 2004, Appendix I.9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Proposed 16QAM transmitter.

Fig. 2
Fig. 2

Operations of the proposed transmitter for 16QAM generation ((a) and (b)). (c)~(f): simulated trajectories of transmitter outputs ((c) and (d)) and after optical bandpass filter when 3-dB bandwidth = 1.4 times the symbol rate ((e) and (f)).

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

Optical eye diagrams of 28-Gbaud 16QAM signals and optical spectrum of 224-Gb/s PDM-RZ-16QAM.

Fig. 5
Fig. 5

Block diagram of phase-folded decision-directed linear equalizer.

Fig. 6
Fig. 6

Measured BER performances of 28-Gbaud signals (dashed: without PF-DD, solid: with PF-DD) and recovered constellations of 224-Gb/s PDM-RZ-16QAM before and after PF-DD linear equalization.

Fig. 7
Fig. 7

Measured eye diagrams of 40-Gbaud 16QAM signals and optical spectrum of 320-Gb/s PDM-RZ-16QAM.

Fig. 8
Fig. 8

Measured BER performances (dashed: without PF-DD, solid: with PF-DD) and recovered constellations of 320-Gb/s PDM-RZ-16QAM signal.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H(t)= 1 2 { exp( jπ A 1 v 1 (t)+jπ v b V π )+exp( jπ A 2 v 2 (t) V π ) }

Metrics