Abstract

We propose using low bandwidth coherent receivers for distributed optical performance monitoring. We demonstrate optical signal-to-noise ratio (OSNR) monitoring of both 20-Gb/s single-polarization and 40-Gb/s polarization-multiplexed coherent optical orthogonal frequency-division multiplexing (CO-OFDM) signals with a 0.8-GHz receiver using both data-aided (DA) and non-data-aided (NDA) approaches. The sampling rate of the performance monitor is much lower than the signal baud rate, so provides a cost-effective solution for distributed optical performance monitoring. The proposed method is demonstrated experimentally and through simulation. The results show that after calibration the OSNR monitoring error is less than 1 dB and the two approaches are not affected by fiber dispersion after 800-km transmission and 30-ps differential group delay (DGD).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. N. Hauske, J. C. Geyer, M. Kuschnerov, K. Piyawanno, T. Duthel, C. R. S. Fludger, D. van den Borne, E. D. Schmidt, B. Spinnler, H. de Waardt, and B. Lankl, “Optical performance monitoring from FIR filter coefðcients in coherent receivers,” in Proc. OFC2008, paper OThW2.
  2. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical performance monitoring,” J. Lightwave Technol.22(1), 294–304 (2004).
    [CrossRef]
  3. C. Zhu, A. V. Tran, S. Chen, L. B. Du, C. C. Do, T. Anderson, A. J. Lowery, and E. Skafidas, “Statistical moments-based OSNR monitoring for coherent optical systems,” Opt. Express20(16), 17711–17721 (2012).
    [CrossRef] [PubMed]
  4. W. Shieh, R. S. Tucker, W. Chen, X. Yi, and G. Pendock, “Optical performance monitoring in coherent optical OFDM systems,” Opt. Express15(2), 350–356 (2007).
    [CrossRef] [PubMed]
  5. M. S. Faruk and K. Kikuchi, “Monitoring of optical signal-to-noise ratio using statistical moments of adaptive-equalizer output in coherent optical receivers,” in Proc. OECC2011, paper 6B4–3.
  6. D. J. Ives, B. C. Thomasen, R. Maher, and S. Savory, “Estimating OSNR of equalised QPSK signals,” in Proc. ECOC2011, OThH5.
  7. X. Yi, W. Shieh, Y. Ma, Y. Tang, and G. J. Pendock, “Experimental demonstration of optical performance monitoring in coherent optical OFDM systems,” in Proc. OFC2008, paper OThW3.
  8. W. Shieh and I. Djordjevic, OFDM for optical communications (Elsevier, 2010).
  9. T. B. Anderson, S. Chen, A. Tran, D. F. Hewitt, L. B. Du, and A. J. Lowery, “Optical performance monitoring with sub–Nyquist coherent receivers,” in Proc. ECOC2012, paper Th.2.A.1.
  10. S. Chen, Q. Yang, Y. Ma, and W. Shieh, “Real-time multi-gigabit receiver for coherent optical MIMO-OFDM signals,” J. Lightwave Technol.27(16), 3699–3704 (2009).
    [CrossRef]
  11. C. Brosseau, Fundamentals of polarized light: a statistical optics approach (John Wiley & Sons, 1998).
  12. B. Szafraniec, B. Nebendahl, and T. Marshall, “Polarization demultiplexing in Stokes space,” Opt. Express18(17), 17928–17939 (2010).
    [CrossRef] [PubMed]
  13. M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photon. Technol. Lett.16(2), 686–688 (2004).
    [CrossRef]
  14. D. J. Ives, B. C. Thomsen, R. Maher, and S. Savory, “Performance estimating OSNR of equalised QPSK signals,” in Proc. ECOC2011, paper Tu.6.A.6.

2012

2010

2009

2007

2004

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photon. Technol. Lett.16(2), 686–688 (2004).
[CrossRef]

D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical performance monitoring,” J. Lightwave Technol.22(1), 294–304 (2004).
[CrossRef]

Anderson, T.

Bach, R.

Blumenthal, D. J.

Chen, S.

Chen, W.

Do, C. C.

Du, L. B.

Einstein, D.

Karlsson, M.

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photon. Technol. Lett.16(2), 686–688 (2004).
[CrossRef]

Kilper, D. C.

Landolsi, T.

Lowery, A. J.

Ma, Y.

Marshall, T.

Nebendahl, B.

Olsson, B. E.

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photon. Technol. Lett.16(2), 686–688 (2004).
[CrossRef]

Ostar, L.

Pendock, G.

Petersson, M.

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photon. Technol. Lett.16(2), 686–688 (2004).
[CrossRef]

Preiss, M.

Shieh, W.

Skafidas, E.

Sunnerud, H.

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photon. Technol. Lett.16(2), 686–688 (2004).
[CrossRef]

Szafraniec, B.

Tran, A. V.

Tucker, R. S.

Willner, A. E.

Yang, Q.

Yi, X.

Zhu, C.

IEEE Photon. Technol. Lett.

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photon. Technol. Lett.16(2), 686–688 (2004).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

D. J. Ives, B. C. Thomsen, R. Maher, and S. Savory, “Performance estimating OSNR of equalised QPSK signals,” in Proc. ECOC2011, paper Tu.6.A.6.

M. S. Faruk and K. Kikuchi, “Monitoring of optical signal-to-noise ratio using statistical moments of adaptive-equalizer output in coherent optical receivers,” in Proc. OECC2011, paper 6B4–3.

D. J. Ives, B. C. Thomasen, R. Maher, and S. Savory, “Estimating OSNR of equalised QPSK signals,” in Proc. ECOC2011, OThH5.

X. Yi, W. Shieh, Y. Ma, Y. Tang, and G. J. Pendock, “Experimental demonstration of optical performance monitoring in coherent optical OFDM systems,” in Proc. OFC2008, paper OThW3.

W. Shieh and I. Djordjevic, OFDM for optical communications (Elsevier, 2010).

T. B. Anderson, S. Chen, A. Tran, D. F. Hewitt, L. B. Du, and A. J. Lowery, “Optical performance monitoring with sub–Nyquist coherent receivers,” in Proc. ECOC2012, paper Th.2.A.1.

F. N. Hauske, J. C. Geyer, M. Kuschnerov, K. Piyawanno, T. Duthel, C. R. S. Fludger, D. van den Borne, E. D. Schmidt, B. Spinnler, H. de Waardt, and B. Lankl, “Optical performance monitoring from FIR filter coefðcients in coherent receivers,” in Proc. OFC2008, paper OThW2.

C. Brosseau, Fundamentals of polarized light: a statistical optics approach (John Wiley & Sons, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Comparison of the full OFDM signal spectrum (grey: 10-GHz wide) and the low bandwidth (blue: approximate 2-GHz wide) signal from the low-pass filter output. The low bandwidth receiver is sampled at 2.5 GSamples/s.

Fig. 2
Fig. 2

Time-domain representation of the polarization-multiplexed OFDM signal including training sequence for timing synchronization, channel estimation, and data payload.

Fig. 3
Fig. 3

OSNR induced scatter on the Poincaré sphere for single-polarization signal.

Fig. 4
Fig. 4

Principle of blind carrier frequency offset estimation.

Fig. 5
Fig. 5

Principle of blind timing synchronization. (a) Periodical SNR performance along with sample index; (b) Zoomed-in SNR curves with Stokes vector scatters on Poincaré spheres vs. timing offset for both single-polarization and polarization-multiplexed OFDM signals.

Fig. 6
Fig. 6

Experimental setup of OSNR monitoring. AWG: arbitrary waveform generator; OSA: optical spectrum analyzer; LO: local oscillator.

Fig. 7
Fig. 7

Constellation diagrams of the demultiplexed X polarization component at 8-dB and 20-dB OSNR.

Fig. 8
Fig. 8

(a) Comparison of SNR curves for subcarriers using 800-MHz LPFs, no filters with full band sampling, and 800-MHz digital filters; (b) SNR curves using 800-MHz LPFs in presence of 800-km transmission and 30-ps DGD.

Fig. 9
Fig. 9

(a) Calibration curve based on linear fit of SNR−1 versus OSNR−1 for back-to-back and 800-km X polarization signal; (b) OSNR estimation error vs. actual OSNR after calibration for back-to-back and 800-km transmission signal.

Fig. 10
Fig. 10

Comparison of Stokes vectors scatter at 12-dB and 22-dB OSNR, 30-ps DGD in optical back-to-back transmission.

Fig. 11
Fig. 11

(a) Comparison of SNRStokes curves for subcarriers using 800-MHz physical filters with and without the presence of 30-ps DGD; (b) OSNR estimation error vs. actual OSNR after calibration for back-to-back single-polarization and polarization-multiplexed signal.

Fig. 12
Fig. 12

Comparison of estimated SNR versus OSNR in ideal noiseless case and normal case with and without DGD before and after 800-km fiber transmission.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S=( s 1 s 2 s 3 )= 1 s 0 ( | e x | 2 | e y | 2 2Re{ e x * e y } 2Im{ e x * e y } )
θ s cos 1 (s. ε ¯ i )
SN R Stokes =10 log 10 ( cos θ s 1 cos θ s )

Metrics