Abstract

We show that using metal-insulator-metal (MIM) waveguides to carry out various second-order nonlinear optical processes not only provides highly desired tight optical confinement but also facilitates the phase-matching due to their inherently large anisotropy. This fact allows one to take advantage of otherwise inaccessible large nonlinear susceptibilities of the cubic zinc blende semiconductors. Our efficiency estimates show that since only the longer wavelength infra-red radiation propagates in the surface-plasmon-polariton (SPP) mode, the losses in the metal, while significant, do not preclude development of highly compact nonlinear optical devices on this integration-friendly semiconductor platform.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
    [CrossRef] [PubMed]
  3. J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett.96(18), 181102 (2010).
    [CrossRef]
  4. F. Wang and Y. R. Shen, “General properties of local Plasmons in metal nanostructures,” Phys. Rev. Lett.97(20), 206806 (2006).
    [CrossRef] [PubMed]
  5. J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett.99(21), 211106 (2011).
    [CrossRef]
  6. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011).
    [CrossRef] [PubMed]
  7. N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett.33(17), 1975–1977 (2008).
    [CrossRef] [PubMed]
  8. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt.11(11), 114030 (2009).
    [CrossRef]
  9. N. I. Zheludev and V. I. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt.6(1), 26–28 (2004).
    [CrossRef]
  10. A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express20(1), 220–227 (2012).
    [CrossRef] [PubMed]
  11. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968).
    [CrossRef]
  12. F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
    [CrossRef]
  13. F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
    [CrossRef]
  14. S. S. Jha, “Nonlinear optical reflection from a metal surface,” Phys. Rev. Lett.15(9), 412–414 (1965).
    [CrossRef]
  15. S. S. Jha, “Theory of optical harmonic generation at a metal surface,” Phys. Rev.140(6A), A2020–A2030 (1965).
    [CrossRef]
  16. F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
    [CrossRef]
  17. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B3(12), 1647–1655 (1986).
    [CrossRef]
  18. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett.33(26), 1531–1534 (1974).
    [CrossRef]
  19. R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun.248(1-3), 249–256 (2005).
    [CrossRef]
  20. K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett.7(2), 254–258 (2007).
    [CrossRef] [PubMed]
  21. N. B. Grosse, J. Heckmann, and U. Woggon, “Nonlinear Plasmon-Photon Interaction Resolved by k-Space Spectroscopy,” Phys. Rev. Lett.108(13), 136802 (2012).
    [CrossRef] [PubMed]
  22. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  23. K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: Mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett.21(10), 630–632 (2009).
    [CrossRef]
  24. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience New York 2003).
  25. X. Yu, L. Scaccabarozzi, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phasematched AlGaAs waveguides,” Opt. Express13(26), 10742–10748 (2005).
    [CrossRef]
  26. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett.71(25), 3622–3624 (1997).
    [CrossRef]
  27. J. B. Khurgin, M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Suspended AlGaAs waveguides for tunable difference frequency generation in mid-infrared,” Opt. Lett.33(24), 2904–2906 (2008).
    [CrossRef] [PubMed]
  28. K. Kim, S. Lee, and P. Delfyett, “1.4kW high peak power generation from an all semiconductor mode-locked master oscillator power amplifier system based on eXtreme Chirped Pulse Amplification(X-CPA),” Opt. Express13(12), 4600–4606 (2005).
    [CrossRef] [PubMed]

2012 (2)

2011 (3)

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
[CrossRef] [PubMed]

J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett.99(21), 211106 (2011).
[CrossRef]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

2010 (1)

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett.96(18), 181102 (2010).
[CrossRef]

2009 (3)

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt.11(11), 114030 (2009).
[CrossRef]

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: Mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett.21(10), 630–632 (2009).
[CrossRef]

2008 (2)

2007 (1)

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett.7(2), 254–258 (2007).
[CrossRef] [PubMed]

2006 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

F. Wang and Y. R. Shen, “General properties of local Plasmons in metal nanostructures,” Phys. Rev. Lett.97(20), 206806 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

N. I. Zheludev and V. I. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt.6(1), 26–28 (2004).
[CrossRef]

1997 (1)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett.71(25), 3622–3624 (1997).
[CrossRef]

1986 (1)

1974 (1)

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett.33(26), 1531–1534 (1974).
[CrossRef]

1968 (1)

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968).
[CrossRef]

1965 (4)

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
[CrossRef]

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
[CrossRef]

S. S. Jha, “Nonlinear optical reflection from a metal surface,” Phys. Rev. Lett.15(9), 412–414 (1965).
[CrossRef]

S. S. Jha, “Theory of optical harmonic generation at a metal surface,” Phys. Rev.140(6A), A2020–A2030 (1965).
[CrossRef]

Ahorinta, R.

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

Albers, W. M.

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

Ayala-Orozco, C.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Berger, V.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett.71(25), 3622–3624 (1997).
[CrossRef]

Bloembergen, N.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Bravetti, P.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett.71(25), 3622–3624 (1997).
[CrossRef]

Brown, F.

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
[CrossRef]

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
[CrossRef]

Chang, R. K.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968).
[CrossRef]

Chauvat, D.

Chen, K.

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett.7(2), 254–258 (2007).
[CrossRef] [PubMed]

Danckwerts, M.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt.11(11), 114030 (2009).
[CrossRef]

de Wilde, Y.

Decker, M.

Delfyett, P.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Durak, C.

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett.7(2), 254–258 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Emel’yanov, V. I.

N. I. Zheludev and V. I. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt.6(1), 26–28 (2004).
[CrossRef]

Fejer, M. M.

Feth, N.

Fiore, A.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett.71(25), 3622–3624 (1997).
[CrossRef]

Flytzanis, C.

Grady, N. K.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Grosse, N. B.

N. B. Grosse, J. Heckmann, and U. Woggon, “Nonlinear Plasmon-Photon Interaction Resolved by k-Space Spectroscopy,” Phys. Rev. Lett.108(13), 136802 (2012).
[CrossRef] [PubMed]

Hache, F.

Halas, N. J.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Harris, J. S.

Hashimoto, K.

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun.248(1-3), 249–256 (2005).
[CrossRef]

Heckmann, J.

N. B. Grosse, J. Heckmann, and U. Woggon, “Nonlinear Plasmon-Photon Interaction Resolved by k-Space Spectroscopy,” Phys. Rev. Lett.108(13), 136802 (2012).
[CrossRef] [PubMed]

Heflin, J. R.

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett.7(2), 254–258 (2007).
[CrossRef] [PubMed]

Hoyer, W.

Jacques, V.

Jha, S. S.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968).
[CrossRef]

S. S. Jha, “Nonlinear optical reflection from a metal surface,” Phys. Rev. Lett.15(9), 412–414 (1965).
[CrossRef]

S. S. Jha, “Theory of optical harmonic generation at a metal surface,” Phys. Rev.140(6A), A2020–A2030 (1965).
[CrossRef]

Jung, K.-Y.

K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: Mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett.21(10), 630–632 (2009).
[CrossRef]

Kajikawa, K.

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun.248(1-3), 249–256 (2005).
[CrossRef]

Kauranen, M.

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett.99(21), 211106 (2011).
[CrossRef]

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett.96(18), 181102 (2010).
[CrossRef]

J. B. Khurgin, M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Suspended AlGaAs waveguides for tunable difference frequency generation in mid-infrared,” Opt. Lett.33(24), 2904–2906 (2008).
[CrossRef] [PubMed]

Kim, K.

Klein, M. W.

Koch, S. W.

Kuo, P. S.

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Laurent, N.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett.71(25), 3622–3624 (1997).
[CrossRef]

Le Xuan, L.

Lee, C. H.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968).
[CrossRef]

Lee, S.

Linden, S.

Liu, J.

Mitchell, D. E.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett.33(26), 1531–1534 (1974).
[CrossRef]

Moloney, J. V.

Nagle, J.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett.71(25), 3622–3624 (1997).
[CrossRef]

Naraoka, R.

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun.248(1-3), 249–256 (2005).
[CrossRef]

Niesler, F. B. P.

Novotny, L.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt.11(11), 114030 (2009).
[CrossRef]

Okawa, H.

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun.248(1-3), 249–256 (2005).
[CrossRef]

Palomba, S.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt.11(11), 114030 (2009).
[CrossRef]

Parks, R. E.

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
[CrossRef]

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
[CrossRef]

Pruessner, M. W.

Rabinovich, W. S.

Reano, R. M.

K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: Mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett.21(10), 630–632 (2009).
[CrossRef]

Ricard, D.

Robinson, H. D.

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett.7(2), 254–258 (2007).
[CrossRef] [PubMed]

Roch, J.-F.

Rodríguez, F. J.

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

Rosencher, E.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett.71(25), 3622–3624 (1997).
[CrossRef]

Scaccabarozzi, L.

Shen, Y. R.

F. Wang and Y. R. Shen, “General properties of local Plasmons in metal nanostructures,” Phys. Rev. Lett.97(20), 206806 (2006).
[CrossRef] [PubMed]

Simon, H. J.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett.33(26), 1531–1534 (1974).
[CrossRef]

Sipe, J. E.

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

Slablab, A.

Sleeper, A. M.

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
[CrossRef]

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
[CrossRef]

Stievater, T. H.

Stockman, M. I.

Sun, G.

J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett.99(21), 211106 (2011).
[CrossRef]

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett.96(18), 181102 (2010).
[CrossRef]

Teixeira, F. L.

K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: Mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett.21(10), 630–632 (2009).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Wang, F.

F. Wang and Y. R. Shen, “General properties of local Plasmons in metal nanostructures,” Phys. Rev. Lett.97(20), 206806 (2006).
[CrossRef] [PubMed]

Wang, F. H.

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

Watson, J. G.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett.33(26), 1531–1534 (1974).
[CrossRef]

Wegener, M.

Woggon, U.

N. B. Grosse, J. Heckmann, and U. Woggon, “Nonlinear Plasmon-Photon Interaction Resolved by k-Space Spectroscopy,” Phys. Rev. Lett.108(13), 136802 (2012).
[CrossRef] [PubMed]

Yu, X.

Zeng, Y.

Zhang, Y.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Zheludev, N. I.

N. I. Zheludev and V. I. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt.6(1), 26–28 (2004).
[CrossRef]

Zielinski, M.

Appl. Phys. Lett. (3)

J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett.96(18), 181102 (2010).
[CrossRef]

J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett.99(21), 211106 (2011).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett.71(25), 3622–3624 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: Mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett.21(10), 630–632 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt.11(11), 114030 (2009).
[CrossRef]

N. I. Zheludev and V. I. Emel’yanov, “Phase matched second harmonic generation from nanostructured metallic surfaces,” J. Opt. A, Pure Appl. Opt.6(1), 26–28 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett.7(2), 254–258 (2007).
[CrossRef] [PubMed]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun.248(1-3), 249–256 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. (2)

S. S. Jha, “Theory of optical harmonic generation at a metal surface,” Phys. Rev.140(6A), A2020–A2030 (1965).
[CrossRef]

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968).
[CrossRef]

Phys. Rev. B (1)

F. H. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

Phys. Rev. Lett. (6)

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
[CrossRef]

F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965).
[CrossRef]

S. S. Jha, “Nonlinear optical reflection from a metal surface,” Phys. Rev. Lett.15(9), 412–414 (1965).
[CrossRef]

F. Wang and Y. R. Shen, “General properties of local Plasmons in metal nanostructures,” Phys. Rev. Lett.97(20), 206806 (2006).
[CrossRef] [PubMed]

N. B. Grosse, J. Heckmann, and U. Woggon, “Nonlinear Plasmon-Photon Interaction Resolved by k-Space Spectroscopy,” Phys. Rev. Lett.108(13), 136802 (2012).
[CrossRef] [PubMed]

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett.33(26), 1531–1534 (1974).
[CrossRef]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience New York 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) The lowest order TE and TM modes in MIM waveguide, (b) their dispersion, (c) power densities of fundamental TM and second harmonic TE waves in the MIM waveguide designed for SHG at 775 nm, (d) effective indices, and (e) loss of these modes as a function of waveguide width d.

Fig. 2
Fig. 2

(a) Power densities of TE pump and TM signal and idler waves in the MIM waveguide designed for DFG at 3710 nm, (b) propagation constants, (c) loss of these modes as a function of waveguide width d, (d) power densities of TE pump and TM signal waves in the MIM waveguide designed for degenerate OPG at 3100 nm, (e) effective indices, and (f) loss of these modes as a function of waveguide width d.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P 2ω P ω = ( πl λ 2ω ) 2 d 14 2 S eff 1 2 η 0 n TM 2 ( ω ) n TE ( 2ω ) P ω
S eff 1 = | core E 2ω,x E ω,y 2 dxdy | 2 | E 2ω | 2 dxdy ( | E ω | 2 dxdy ) 2
P idler P signal = ( πl λ idler ) 2 ( 2 d 14 ) 2 S eff 1 2 η 0 n TE ( pump ) n TM ( sig ) n TM ( idl ) P pump
S eff 1 = | core E pump,y E sig,x E idl,x dxdy | 2 | E | pump 2 dxdy | E | sig 2 dxdy | E | idl 2 dxdy
P th n TE ( pump ) ( n TM ( sig ) ) 2 2 η 0 | 2 d 14 | 2 ( λ sig π l prop ( sig ) ) 2 S eff

Metrics