Abstract

Optical potential energy landscapes created using acousto-optical deflectors are characterized via solvent-driven colloidal particles. The full potential energy of both single optical traps and complex landscapes composed of multiple overlapping traps are determined using a simple force balance argument. The potential of a single trap is shown to be well described by a Gaussian trap with stiffness found to be consistent with those obtained by a thermal equilibrium method. We also obtain directly the depth of the well, which (as with stiffness) varies with laser power. Finally, various complex systems ranging from double-well potentials to random landscapes are generated from individually controlled optical traps. Predictions of these landscapes as a sum of single Gaussian wells are shown to be a good description of experimental results, offering the potential for fully controlled design of optical landscapes, constructed from single optical traps.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, and H.-J. Güntherodt, “Velocity Dependence of Atomic Friction,” Phys. Rev. Lett.84, 1172–1175 (2000).
    [CrossRef] [PubMed]
  2. K. E. Kürten and C. Krattenthaler, “Multistability and multi 2π-kinks in the Frenkel-Kontorova model: an application to arrays of Josephson Junctions,” Int. J. Mod. Phys. B21, 2324–2334 (2007).
    [CrossRef]
  3. V. K. Vlasko-Vlasov, A. E. Koshelev, U. Welp, W. Kwok, A. Rydh, G. W. Crabtree, and K. Kadowaki, “Magneto-optical imaging of Josephson vortices in layered superconductors,” in Magneto-Optical Imaging, T. H. Johansed and D. V. Shantsev, eds. (Springer, 2004), pp. 39–46.
    [CrossRef]
  4. B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
    [CrossRef]
  5. D. J. Harris, J. C. Conrad, and J. A. Lewis, “Evaporative lithographic patterning of binary colloidal films,” Phil. Trans. R. Soc. A367, 5157–5165 (2009).
    [CrossRef] [PubMed]
  6. G. Zhang and D. Wang, “Colloidal Lithography - The Art of Nanochemical Patterning,” Chem. Asian J.4, 236–245 (2009).
    [CrossRef]
  7. A. J. O’Reilly, C. Francis, and N. J. Quitoriano, “Gold nanoparticle deposition on Si by destabilising gold colloid with HF,” J. Colloid Interf. Sci.370, 46–50 (2012).
    [CrossRef]
  8. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24, 156–159 (1970).
    [CrossRef]
  9. P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett.89, 128301 (2002).
    [CrossRef] [PubMed]
  10. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426, 421–424 (2003).
    [CrossRef] [PubMed]
  11. G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optical generated potential energy landscapes,” Opt. Lett.32, 1144–1146 (2007).
    [CrossRef] [PubMed]
  12. K. Xiao and D.G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E82, 051407 (2010).
    [CrossRef]
  13. C. Bechinger, M. Brunner, and P. Leiderer, “Phase Behavior of Two-Dimensional Colloidal Systems in the Presence of Periodic Light Fields,” Phys. Rev. Lett.86, 930–934 (2001).
    [CrossRef] [PubMed]
  14. D. Babic, C. Schmitt, I. Poberaj, and C. Bechinger, “Stochastic resonance in colloidal systems,” Europhys. Lett.67, 158–164 (2004).
    [CrossRef]
  15. C. Schmitt, B. Dybiec, P. Hänggi, and C. Bechinger, “Stochastic resonance vs. resonant activation,” Europhys. Lett.74, 937–943 (2006).
    [CrossRef]
  16. R. D. L. Hanes, C. Dalle-Ferier, M. Schmiedeberg, M. C. Jenkins, and S.U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter8, 2714–2723 (2012).
    [CrossRef]
  17. A. Curran, M. P. Lee, R. Di Leonardo, J. M. Cooper, and M. J. Padgett, “Partial synchronization of stochastic oscillators through hydrodynamic coupleing,” Phys. Rev. Lett.108, 240601 (2012).
    [CrossRef] [PubMed]
  18. T. Bohlein, J. Mikhael, and C. Bechinger, “Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces,” Nat. Materials11, 126–130 (2012).
    [CrossRef]
  19. T. Bohlein and C. Bechinger, “Experimental observation of directional locking and dynamical ordering of colloidal monolayers driven across quasiperiodic substrates,” Phys. Rev. Lett.109, 058301 (2012).
    [CrossRef] [PubMed]
  20. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75, 2787 (2004).
    [CrossRef]
  21. J. Dobnikar, M. Brunner, H. H. von Grünberg, and C. Bechinger, “Three-body interactions in colloidal systems,” Phys. Rev. E69, 031402 (2004).
    [CrossRef]
  22. A. C. Richardson, S. N. S. Reihani, and L. B. Oddershede, “Non-harmonic potential of a single beam optical trap,” Opt. Express16, 15709–15717 (2008).
    [CrossRef] [PubMed]
  23. T. Godazgar, R. Shokri, and S. N. Reihani, “Potential mapping of optical tweezers,” Optics Letters36, 3284–3286 (2011).
    [CrossRef] [PubMed]
  24. M. Jahnel, M. Behrndt, A. Jannasch, E. Schäffer, and S. W. Grill, “Measuring the complete force field of an optical trap,” Opt. Lett.36, 1260–1262 (2011).
    [CrossRef] [PubMed]
  25. R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S103–S112 (2007).
    [CrossRef]
  26. M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: Broadband microrheology,” Phys. Rev. E81, 026308 (2012).
    [CrossRef]
  27. A. V. Arzola, K. Volke-Sepulveda, and J. L. Mateos, “Force mapping of an extended light pattern in an inclined plane: Deterministic regime,” Opt. Express17, 3429–3440 (2009).
    [CrossRef] [PubMed]
  28. K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation,” Phys. Rev. E70, 010901 (2004).
    [CrossRef]
  29. M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11, 1196–1205 (2011).
    [CrossRef] [PubMed]
  30. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1983).
  31. A. V. Straube, A. A. Louis, J. Baumgartl, C. Bechinger, and R. P. A. Dullens, “Pattern formation in colloidal explosions,”Europhys. Lett.94, 48008 (2011).
    [CrossRef]
  32. T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical Gradient Forces of Strongly Localized Fields,” Phys. Rev. Lett.81, 1738–1741 (1998).
    [CrossRef]
  33. J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E79, 026301 (2009).
    [CrossRef]
  34. Aresis d.o.o., Aresis beam steering controller and Tweez software (2007).
  35. J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci.179, 298–310 (1996).
    [CrossRef]
  36. E. Weeks, Particle tracking using IDL, http://www.physics.emory.edu/weeks/idl/ .
  37. A. Rohrbach, “Stiffness of Optical Traps: Quantitative Agreement between Experiment and Electromagnetic Theory,” Phys. Rev. Lett.95, 168102 (2005).
    [CrossRef] [PubMed]
  38. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124, 529–541 (1996).
    [CrossRef]

2012 (6)

A. J. O’Reilly, C. Francis, and N. J. Quitoriano, “Gold nanoparticle deposition on Si by destabilising gold colloid with HF,” J. Colloid Interf. Sci.370, 46–50 (2012).
[CrossRef]

R. D. L. Hanes, C. Dalle-Ferier, M. Schmiedeberg, M. C. Jenkins, and S.U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter8, 2714–2723 (2012).
[CrossRef]

A. Curran, M. P. Lee, R. Di Leonardo, J. M. Cooper, and M. J. Padgett, “Partial synchronization of stochastic oscillators through hydrodynamic coupleing,” Phys. Rev. Lett.108, 240601 (2012).
[CrossRef] [PubMed]

T. Bohlein, J. Mikhael, and C. Bechinger, “Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces,” Nat. Materials11, 126–130 (2012).
[CrossRef]

T. Bohlein and C. Bechinger, “Experimental observation of directional locking and dynamical ordering of colloidal monolayers driven across quasiperiodic substrates,” Phys. Rev. Lett.109, 058301 (2012).
[CrossRef] [PubMed]

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: Broadband microrheology,” Phys. Rev. E81, 026308 (2012).
[CrossRef]

2011 (4)

M. Jahnel, M. Behrndt, A. Jannasch, E. Schäffer, and S. W. Grill, “Measuring the complete force field of an optical trap,” Opt. Lett.36, 1260–1262 (2011).
[CrossRef] [PubMed]

M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11, 1196–1205 (2011).
[CrossRef] [PubMed]

A. V. Straube, A. A. Louis, J. Baumgartl, C. Bechinger, and R. P. A. Dullens, “Pattern formation in colloidal explosions,”Europhys. Lett.94, 48008 (2011).
[CrossRef]

T. Godazgar, R. Shokri, and S. N. Reihani, “Potential mapping of optical tweezers,” Optics Letters36, 3284–3286 (2011).
[CrossRef] [PubMed]

2010 (1)

K. Xiao and D.G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E82, 051407 (2010).
[CrossRef]

2009 (4)

D. J. Harris, J. C. Conrad, and J. A. Lewis, “Evaporative lithographic patterning of binary colloidal films,” Phil. Trans. R. Soc. A367, 5157–5165 (2009).
[CrossRef] [PubMed]

G. Zhang and D. Wang, “Colloidal Lithography - The Art of Nanochemical Patterning,” Chem. Asian J.4, 236–245 (2009).
[CrossRef]

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E79, 026301 (2009).
[CrossRef]

A. V. Arzola, K. Volke-Sepulveda, and J. L. Mateos, “Force mapping of an extended light pattern in an inclined plane: Deterministic regime,” Opt. Express17, 3429–3440 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (4)

G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optical generated potential energy landscapes,” Opt. Lett.32, 1144–1146 (2007).
[CrossRef] [PubMed]

Aresis d.o.o., Aresis beam steering controller and Tweez software (2007).

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S103–S112 (2007).
[CrossRef]

K. E. Kürten and C. Krattenthaler, “Multistability and multi 2π-kinks in the Frenkel-Kontorova model: an application to arrays of Josephson Junctions,” Int. J. Mod. Phys. B21, 2324–2334 (2007).
[CrossRef]

2006 (1)

C. Schmitt, B. Dybiec, P. Hänggi, and C. Bechinger, “Stochastic resonance vs. resonant activation,” Europhys. Lett.74, 937–943 (2006).
[CrossRef]

2005 (1)

A. Rohrbach, “Stiffness of Optical Traps: Quantitative Agreement between Experiment and Electromagnetic Theory,” Phys. Rev. Lett.95, 168102 (2005).
[CrossRef] [PubMed]

2004 (4)

D. Babic, C. Schmitt, I. Poberaj, and C. Bechinger, “Stochastic resonance in colloidal systems,” Europhys. Lett.67, 158–164 (2004).
[CrossRef]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75, 2787 (2004).
[CrossRef]

J. Dobnikar, M. Brunner, H. H. von Grünberg, and C. Bechinger, “Three-body interactions in colloidal systems,” Phys. Rev. E69, 031402 (2004).
[CrossRef]

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation,” Phys. Rev. E70, 010901 (2004).
[CrossRef]

2003 (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426, 421–424 (2003).
[CrossRef] [PubMed]

2002 (1)

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett.89, 128301 (2002).
[CrossRef] [PubMed]

2001 (2)

B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
[CrossRef]

C. Bechinger, M. Brunner, and P. Leiderer, “Phase Behavior of Two-Dimensional Colloidal Systems in the Presence of Periodic Light Fields,” Phys. Rev. Lett.86, 930–934 (2001).
[CrossRef] [PubMed]

2000 (1)

E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, and H.-J. Güntherodt, “Velocity Dependence of Atomic Friction,” Phys. Rev. Lett.84, 1172–1175 (2000).
[CrossRef] [PubMed]

1998 (1)

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical Gradient Forces of Strongly Localized Fields,” Phys. Rev. Lett.81, 1738–1741 (1998).
[CrossRef]

1996 (2)

J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci.179, 298–310 (1996).
[CrossRef]

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124, 529–541 (1996).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24, 156–159 (1970).
[CrossRef]

Arzola, A. V.

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124, 529–541 (1996).
[CrossRef]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24, 156–159 (1970).
[CrossRef]

Babic, D.

D. Babic, C. Schmitt, I. Poberaj, and C. Bechinger, “Stochastic resonance in colloidal systems,” Europhys. Lett.67, 158–164 (2004).
[CrossRef]

Bammerlin, M.

E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, and H.-J. Güntherodt, “Velocity Dependence of Atomic Friction,” Phys. Rev. Lett.84, 1172–1175 (2000).
[CrossRef] [PubMed]

Bar-Ziv, R.

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical Gradient Forces of Strongly Localized Fields,” Phys. Rev. Lett.81, 1738–1741 (1998).
[CrossRef]

Baumgartl, J.

A. V. Straube, A. A. Louis, J. Baumgartl, C. Bechinger, and R. P. A. Dullens, “Pattern formation in colloidal explosions,”Europhys. Lett.94, 48008 (2011).
[CrossRef]

Bechinger, C.

T. Bohlein and C. Bechinger, “Experimental observation of directional locking and dynamical ordering of colloidal monolayers driven across quasiperiodic substrates,” Phys. Rev. Lett.109, 058301 (2012).
[CrossRef] [PubMed]

T. Bohlein, J. Mikhael, and C. Bechinger, “Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces,” Nat. Materials11, 126–130 (2012).
[CrossRef]

A. V. Straube, A. A. Louis, J. Baumgartl, C. Bechinger, and R. P. A. Dullens, “Pattern formation in colloidal explosions,”Europhys. Lett.94, 48008 (2011).
[CrossRef]

C. Schmitt, B. Dybiec, P. Hänggi, and C. Bechinger, “Stochastic resonance vs. resonant activation,” Europhys. Lett.74, 937–943 (2006).
[CrossRef]

D. Babic, C. Schmitt, I. Poberaj, and C. Bechinger, “Stochastic resonance in colloidal systems,” Europhys. Lett.67, 158–164 (2004).
[CrossRef]

J. Dobnikar, M. Brunner, H. H. von Grünberg, and C. Bechinger, “Three-body interactions in colloidal systems,” Phys. Rev. E69, 031402 (2004).
[CrossRef]

C. Bechinger, M. Brunner, and P. Leiderer, “Phase Behavior of Two-Dimensional Colloidal Systems in the Presence of Periodic Light Fields,” Phys. Rev. Lett.86, 930–934 (2001).
[CrossRef] [PubMed]

Behrndt, M.

Bennewitz, R.

E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, and H.-J. Güntherodt, “Velocity Dependence of Atomic Friction,” Phys. Rev. Lett.84, 1172–1175 (2000).
[CrossRef] [PubMed]

Bernard, A.

B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
[CrossRef]

Bietsch, A.

B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
[CrossRef]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75, 2787 (2004).
[CrossRef]

Bohlein, T.

T. Bohlein, J. Mikhael, and C. Bechinger, “Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces,” Nat. Materials11, 126–130 (2012).
[CrossRef]

T. Bohlein and C. Bechinger, “Experimental observation of directional locking and dynamical ordering of colloidal monolayers driven across quasiperiodic substrates,” Phys. Rev. Lett.109, 058301 (2012).
[CrossRef] [PubMed]

Boyce, M. C.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S103–S112 (2007).
[CrossRef]

Brau, R. R.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S103–S112 (2007).
[CrossRef]

Brenner, H.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1983).

Brunner, M.

J. Dobnikar, M. Brunner, H. H. von Grünberg, and C. Bechinger, “Three-body interactions in colloidal systems,” Phys. Rev. E69, 031402 (2004).
[CrossRef]

C. Bechinger, M. Brunner, and P. Leiderer, “Phase Behavior of Two-Dimensional Colloidal Systems in the Presence of Periodic Light Fields,” Phys. Rev. Lett.86, 930–934 (2001).
[CrossRef] [PubMed]

Castro, C. E.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S103–S112 (2007).
[CrossRef]

Conrad, J. C.

D. J. Harris, J. C. Conrad, and J. A. Lewis, “Evaporative lithographic patterning of binary colloidal films,” Phil. Trans. R. Soc. A367, 5157–5165 (2009).
[CrossRef] [PubMed]

Cooper, J. M.

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: Broadband microrheology,” Phys. Rev. E81, 026308 (2012).
[CrossRef]

A. Curran, M. P. Lee, R. Di Leonardo, J. M. Cooper, and M. J. Padgett, “Partial synchronization of stochastic oscillators through hydrodynamic coupleing,” Phys. Rev. Lett.108, 240601 (2012).
[CrossRef] [PubMed]

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E79, 026301 (2009).
[CrossRef]

Crabtree, G. W.

V. K. Vlasko-Vlasov, A. E. Koshelev, U. Welp, W. Kwok, A. Rydh, G. W. Crabtree, and K. Kadowaki, “Magneto-optical imaging of Josephson vortices in layered superconductors,” in Magneto-Optical Imaging, T. H. Johansed and D. V. Shantsev, eds. (Springer, 2004), pp. 39–46.
[CrossRef]

Crocker, J. C.

J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci.179, 298–310 (1996).
[CrossRef]

Curran, A.

A. Curran, M. P. Lee, R. Di Leonardo, J. M. Cooper, and M. J. Padgett, “Partial synchronization of stochastic oscillators through hydrodynamic coupleing,” Phys. Rev. Lett.108, 240601 (2012).
[CrossRef] [PubMed]

Dalle-Ferier, C.

R. D. L. Hanes, C. Dalle-Ferier, M. Schmiedeberg, M. C. Jenkins, and S.U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter8, 2714–2723 (2012).
[CrossRef]

Delamarche, E.

B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
[CrossRef]

Dholakia, K.

Di Leonardo, R.

A. Curran, M. P. Lee, R. Di Leonardo, J. M. Cooper, and M. J. Padgett, “Partial synchronization of stochastic oscillators through hydrodynamic coupleing,” Phys. Rev. Lett.108, 240601 (2012).
[CrossRef] [PubMed]

M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11, 1196–1205 (2011).
[CrossRef] [PubMed]

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E79, 026301 (2009).
[CrossRef]

Dobnikar, J.

J. Dobnikar, M. Brunner, H. H. von Grünberg, and C. Bechinger, “Three-body interactions in colloidal systems,” Phys. Rev. E69, 031402 (2004).
[CrossRef]

Dullens, R. P. A.

A. V. Straube, A. A. Louis, J. Baumgartl, C. Bechinger, and R. P. A. Dullens, “Pattern formation in colloidal explosions,”Europhys. Lett.94, 48008 (2011).
[CrossRef]

Dybiec, B.

C. Schmitt, B. Dybiec, P. Hänggi, and C. Bechinger, “Stochastic resonance vs. resonant activation,” Europhys. Lett.74, 937–943 (2006).
[CrossRef]

Egelhaaf, S.U.

R. D. L. Hanes, C. Dalle-Ferier, M. Schmiedeberg, M. C. Jenkins, and S.U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter8, 2714–2723 (2012).
[CrossRef]

Evans, R. M. L.

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: Broadband microrheology,” Phys. Rev. E81, 026308 (2012).
[CrossRef]

Ferrer, J. M.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S103–S112 (2007).
[CrossRef]

Francis, C.

A. J. O’Reilly, C. Francis, and N. J. Quitoriano, “Gold nanoparticle deposition on Si by destabilising gold colloid with HF,” J. Colloid Interf. Sci.370, 46–50 (2012).
[CrossRef]

Geissler, M.

B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
[CrossRef]

Gibson, G. M.

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: Broadband microrheology,” Phys. Rev. E81, 026308 (2012).
[CrossRef]

Gnecco, E.

E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, and H.-J. Güntherodt, “Velocity Dependence of Atomic Friction,” Phys. Rev. Lett.84, 1172–1175 (2000).
[CrossRef] [PubMed]

Godazgar, T.

T. Godazgar, R. Shokri, and S. N. Reihani, “Potential mapping of optical tweezers,” Optics Letters36, 3284–3286 (2011).
[CrossRef] [PubMed]

Grier, D. G.

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation,” Phys. Rev. E70, 010901 (2004).
[CrossRef]

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett.89, 128301 (2002).
[CrossRef] [PubMed]

J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci.179, 298–310 (1996).
[CrossRef]

Grier, D.G.

K. Xiao and D.G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E82, 051407 (2010).
[CrossRef]

Grill, S. W.

Güntherodt, H.-J.

E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, and H.-J. Güntherodt, “Velocity Dependence of Atomic Friction,” Phys. Rev. Lett.84, 1172–1175 (2000).
[CrossRef] [PubMed]

Gyalog, T.

E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, and H.-J. Güntherodt, “Velocity Dependence of Atomic Friction,” Phys. Rev. Lett.84, 1172–1175 (2000).
[CrossRef] [PubMed]

Hanes, R. D. L.

R. D. L. Hanes, C. Dalle-Ferier, M. Schmiedeberg, M. C. Jenkins, and S.U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter8, 2714–2723 (2012).
[CrossRef]

Hänggi, P.

C. Schmitt, B. Dybiec, P. Hänggi, and C. Bechinger, “Stochastic resonance vs. resonant activation,” Europhys. Lett.74, 937–943 (2006).
[CrossRef]

Happel, J.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1983).

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124, 529–541 (1996).
[CrossRef]

Harris, D. J.

D. J. Harris, J. C. Conrad, and J. A. Lewis, “Evaporative lithographic patterning of binary colloidal films,” Phil. Trans. R. Soc. A367, 5157–5165 (2009).
[CrossRef] [PubMed]

Jahnel, M.

Jannasch, A.

Jenkins, M. C.

R. D. L. Hanes, C. Dalle-Ferier, M. Schmiedeberg, M. C. Jenkins, and S.U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter8, 2714–2723 (2012).
[CrossRef]

Juncker, D.

B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
[CrossRef]

Kadowaki, K.

V. K. Vlasko-Vlasov, A. E. Koshelev, U. Welp, W. Kwok, A. Rydh, G. W. Crabtree, and K. Kadowaki, “Magneto-optical imaging of Josephson vortices in layered superconductors,” in Magneto-Optical Imaging, T. H. Johansed and D. V. Shantsev, eds. (Springer, 2004), pp. 39–46.
[CrossRef]

Kamm, R. D.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S103–S112 (2007).
[CrossRef]

Kasza, K.

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation,” Phys. Rev. E70, 010901 (2004).
[CrossRef]

Keen, S.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E79, 026301 (2009).
[CrossRef]

Kind, H.

B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
[CrossRef]

Korda, P. T.

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett.89, 128301 (2002).
[CrossRef] [PubMed]

Koshelev, A. E.

V. K. Vlasko-Vlasov, A. E. Koshelev, U. Welp, W. Kwok, A. Rydh, G. W. Crabtree, and K. Kadowaki, “Magneto-optical imaging of Josephson vortices in layered superconductors,” in Magneto-Optical Imaging, T. H. Johansed and D. V. Shantsev, eds. (Springer, 2004), pp. 39–46.
[CrossRef]

Krattenthaler, C.

K. E. Kürten and C. Krattenthaler, “Multistability and multi 2π-kinks in the Frenkel-Kontorova model: an application to arrays of Josephson Junctions,” Int. J. Mod. Phys. B21, 2324–2334 (2007).
[CrossRef]

Kürten, K. E.

K. E. Kürten and C. Krattenthaler, “Multistability and multi 2π-kinks in the Frenkel-Kontorova model: an application to arrays of Josephson Junctions,” Int. J. Mod. Phys. B21, 2324–2334 (2007).
[CrossRef]

Kwok, W.

V. K. Vlasko-Vlasov, A. E. Koshelev, U. Welp, W. Kwok, A. Rydh, G. W. Crabtree, and K. Kadowaki, “Magneto-optical imaging of Josephson vortices in layered superconductors,” in Magneto-Optical Imaging, T. H. Johansed and D. V. Shantsev, eds. (Springer, 2004), pp. 39–46.
[CrossRef]

Ladavac, K.

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation,” Phys. Rev. E70, 010901 (2004).
[CrossRef]

Lang, M. J.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S103–S112 (2007).
[CrossRef]

Leach, J.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E79, 026301 (2009).
[CrossRef]

Lee, H.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S103–S112 (2007).
[CrossRef]

Lee, M. P.

A. Curran, M. P. Lee, R. Di Leonardo, J. M. Cooper, and M. J. Padgett, “Partial synchronization of stochastic oscillators through hydrodynamic coupleing,” Phys. Rev. Lett.108, 240601 (2012).
[CrossRef] [PubMed]

Leiderer, P.

C. Bechinger, M. Brunner, and P. Leiderer, “Phase Behavior of Two-Dimensional Colloidal Systems in the Presence of Periodic Light Fields,” Phys. Rev. Lett.86, 930–934 (2001).
[CrossRef] [PubMed]

Lewis, J. A.

D. J. Harris, J. C. Conrad, and J. A. Lewis, “Evaporative lithographic patterning of binary colloidal films,” Phil. Trans. R. Soc. A367, 5157–5165 (2009).
[CrossRef] [PubMed]

Loppacher, Ch.

E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, and H.-J. Güntherodt, “Velocity Dependence of Atomic Friction,” Phys. Rev. Lett.84, 1172–1175 (2000).
[CrossRef] [PubMed]

Louis, A. A.

A. V. Straube, A. A. Louis, J. Baumgartl, C. Bechinger, and R. P. A. Dullens, “Pattern formation in colloidal explosions,”Europhys. Lett.94, 48008 (2011).
[CrossRef]

MacDonald, M.

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426, 421–424 (2003).
[CrossRef] [PubMed]

Mateos, J. L.

Matsudaira, P.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S103–S112 (2007).
[CrossRef]

Meller, A.

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical Gradient Forces of Strongly Localized Fields,” Phys. Rev. Lett.81, 1738–1741 (1998).
[CrossRef]

Meyer, E.

E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, and H.-J. Güntherodt, “Velocity Dependence of Atomic Friction,” Phys. Rev. Lett.84, 1172–1175 (2000).
[CrossRef] [PubMed]

Michel, B.

B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
[CrossRef]

Mikhael, J.

T. Bohlein, J. Mikhael, and C. Bechinger, “Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces,” Nat. Materials11, 126–130 (2012).
[CrossRef]

Milne, G.

Mushfique, H.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E79, 026301 (2009).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75, 2787 (2004).
[CrossRef]

O’Reilly, A. J.

A. J. O’Reilly, C. Francis, and N. J. Quitoriano, “Gold nanoparticle deposition on Si by destabilising gold colloid with HF,” J. Colloid Interf. Sci.370, 46–50 (2012).
[CrossRef]

Oddershede, L. B.

Padgett, M. J.

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: Broadband microrheology,” Phys. Rev. E81, 026308 (2012).
[CrossRef]

A. Curran, M. P. Lee, R. Di Leonardo, J. M. Cooper, and M. J. Padgett, “Partial synchronization of stochastic oscillators through hydrodynamic coupleing,” Phys. Rev. Lett.108, 240601 (2012).
[CrossRef] [PubMed]

M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11, 1196–1205 (2011).
[CrossRef] [PubMed]

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E79, 026301 (2009).
[CrossRef]

Poberaj, I.

D. Babic, C. Schmitt, I. Poberaj, and C. Bechinger, “Stochastic resonance in colloidal systems,” Europhys. Lett.67, 158–164 (2004).
[CrossRef]

Quitoriano, N. J.

A. J. O’Reilly, C. Francis, and N. J. Quitoriano, “Gold nanoparticle deposition on Si by destabilising gold colloid with HF,” J. Colloid Interf. Sci.370, 46–50 (2012).
[CrossRef]

Reihani, S. N.

T. Godazgar, R. Shokri, and S. N. Reihani, “Potential mapping of optical tweezers,” Optics Letters36, 3284–3286 (2011).
[CrossRef] [PubMed]

Reihani, S. N. S.

Renault, J.-P.

B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
[CrossRef]

Rhodes, D.

Richardson, A. C.

Rohrbach, A.

A. Rohrbach, “Stiffness of Optical Traps: Quantitative Agreement between Experiment and Electromagnetic Theory,” Phys. Rev. Lett.95, 168102 (2005).
[CrossRef] [PubMed]

Rothuizen, H.

B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
[CrossRef]

Ruocco, G.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E79, 026301 (2009).
[CrossRef]

Rydh, A.

V. K. Vlasko-Vlasov, A. E. Koshelev, U. Welp, W. Kwok, A. Rydh, G. W. Crabtree, and K. Kadowaki, “Magneto-optical imaging of Josephson vortices in layered superconductors,” in Magneto-Optical Imaging, T. H. Johansed and D. V. Shantsev, eds. (Springer, 2004), pp. 39–46.
[CrossRef]

Schäffer, E.

Schmid, H.

B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
[CrossRef]

Schmidt-Winkel, P.

B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
[CrossRef]

Schmiedeberg, M.

R. D. L. Hanes, C. Dalle-Ferier, M. Schmiedeberg, M. C. Jenkins, and S.U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter8, 2714–2723 (2012).
[CrossRef]

Schmitt, C.

C. Schmitt, B. Dybiec, P. Hänggi, and C. Bechinger, “Stochastic resonance vs. resonant activation,” Europhys. Lett.74, 937–943 (2006).
[CrossRef]

D. Babic, C. Schmitt, I. Poberaj, and C. Bechinger, “Stochastic resonance in colloidal systems,” Europhys. Lett.67, 158–164 (2004).
[CrossRef]

Shokri, R.

T. Godazgar, R. Shokri, and S. N. Reihani, “Potential mapping of optical tweezers,” Optics Letters36, 3284–3286 (2011).
[CrossRef] [PubMed]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426, 421–424 (2003).
[CrossRef] [PubMed]

Straube, A. V.

A. V. Straube, A. A. Louis, J. Baumgartl, C. Bechinger, and R. P. A. Dullens, “Pattern formation in colloidal explosions,”Europhys. Lett.94, 48008 (2011).
[CrossRef]

Stutz, R.

B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
[CrossRef]

Tam, B. K.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S103–S112 (2007).
[CrossRef]

Tarsa, P. B.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S103–S112 (2007).
[CrossRef]

Tassieri, M.

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: Broadband microrheology,” Phys. Rev. E81, 026308 (2012).
[CrossRef]

Taylor, M. B.

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett.89, 128301 (2002).
[CrossRef] [PubMed]

Tlusty, T.

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical Gradient Forces of Strongly Localized Fields,” Phys. Rev. Lett.81, 1738–1741 (1998).
[CrossRef]

Vlasko-Vlasov, V. K.

V. K. Vlasko-Vlasov, A. E. Koshelev, U. Welp, W. Kwok, A. Rydh, G. W. Crabtree, and K. Kadowaki, “Magneto-optical imaging of Josephson vortices in layered superconductors,” in Magneto-Optical Imaging, T. H. Johansed and D. V. Shantsev, eds. (Springer, 2004), pp. 39–46.
[CrossRef]

Volke-Sepulveda, K.

von Grünberg, H. H.

J. Dobnikar, M. Brunner, H. H. von Grünberg, and C. Bechinger, “Three-body interactions in colloidal systems,” Phys. Rev. E69, 031402 (2004).
[CrossRef]

Wang, D.

G. Zhang and D. Wang, “Colloidal Lithography - The Art of Nanochemical Patterning,” Chem. Asian J.4, 236–245 (2009).
[CrossRef]

Warren, R.

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: Broadband microrheology,” Phys. Rev. E81, 026308 (2012).
[CrossRef]

Welp, U.

V. K. Vlasko-Vlasov, A. E. Koshelev, U. Welp, W. Kwok, A. Rydh, G. W. Crabtree, and K. Kadowaki, “Magneto-optical imaging of Josephson vortices in layered superconductors,” in Magneto-Optical Imaging, T. H. Johansed and D. V. Shantsev, eds. (Springer, 2004), pp. 39–46.
[CrossRef]

Wolf, H.

B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
[CrossRef]

Xiao, K.

K. Xiao and D.G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E82, 051407 (2010).
[CrossRef]

Yao, A. M.

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: Broadband microrheology,” Phys. Rev. E81, 026308 (2012).
[CrossRef]

Zhang, G.

G. Zhang and D. Wang, “Colloidal Lithography - The Art of Nanochemical Patterning,” Chem. Asian J.4, 236–245 (2009).
[CrossRef]

Aresis beam steering controller and Tweez software (1)

Aresis d.o.o., Aresis beam steering controller and Tweez software (2007).

Chem. Asian J. (1)

G. Zhang and D. Wang, “Colloidal Lithography - The Art of Nanochemical Patterning,” Chem. Asian J.4, 236–245 (2009).
[CrossRef]

Europhys. Lett. (3)

D. Babic, C. Schmitt, I. Poberaj, and C. Bechinger, “Stochastic resonance in colloidal systems,” Europhys. Lett.67, 158–164 (2004).
[CrossRef]

C. Schmitt, B. Dybiec, P. Hänggi, and C. Bechinger, “Stochastic resonance vs. resonant activation,” Europhys. Lett.74, 937–943 (2006).
[CrossRef]

A. V. Straube, A. A. Louis, J. Baumgartl, C. Bechinger, and R. P. A. Dullens, “Pattern formation in colloidal explosions,”Europhys. Lett.94, 48008 (2011).
[CrossRef]

IBM J. Res. & Dev. (1)

B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM J. Res. & Dev.45, 697–719 (2001).
[CrossRef]

Int. J. Mod. Phys. B (1)

K. E. Kürten and C. Krattenthaler, “Multistability and multi 2π-kinks in the Frenkel-Kontorova model: an application to arrays of Josephson Junctions,” Int. J. Mod. Phys. B21, 2324–2334 (2007).
[CrossRef]

J. Colloid Interf. Sci. (1)

A. J. O’Reilly, C. Francis, and N. J. Quitoriano, “Gold nanoparticle deposition on Si by destabilising gold colloid with HF,” J. Colloid Interf. Sci.370, 46–50 (2012).
[CrossRef]

J. Colloid Interface Sci. (1)

J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci.179, 298–310 (1996).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S103–S112 (2007).
[CrossRef]

Lab Chip (1)

M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11, 1196–1205 (2011).
[CrossRef] [PubMed]

Nat. Materials (1)

T. Bohlein, J. Mikhael, and C. Bechinger, “Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces,” Nat. Materials11, 126–130 (2012).
[CrossRef]

Nature (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426, 421–424 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124, 529–541 (1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Optics Letters (1)

T. Godazgar, R. Shokri, and S. N. Reihani, “Potential mapping of optical tweezers,” Optics Letters36, 3284–3286 (2011).
[CrossRef] [PubMed]

Phil. Trans. R. Soc. A (1)

D. J. Harris, J. C. Conrad, and J. A. Lewis, “Evaporative lithographic patterning of binary colloidal films,” Phil. Trans. R. Soc. A367, 5157–5165 (2009).
[CrossRef] [PubMed]

Phys. Rev. E (5)

K. Xiao and D.G. Grier, “Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation,” Phys. Rev. E82, 051407 (2010).
[CrossRef]

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, “Comparison of Faxns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E79, 026301 (2009).
[CrossRef]

M. Tassieri, G. M. Gibson, R. M. L. Evans, A. M. Yao, R. Warren, M. J. Padgett, and J. M. Cooper, “Measuring storage and loss moduli using optical tweezers: Broadband microrheology,” Phys. Rev. E81, 026308 (2012).
[CrossRef]

J. Dobnikar, M. Brunner, H. H. von Grünberg, and C. Bechinger, “Three-body interactions in colloidal systems,” Phys. Rev. E69, 031402 (2004).
[CrossRef]

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation,” Phys. Rev. E70, 010901 (2004).
[CrossRef]

Phys. Rev. Lett. (8)

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical Gradient Forces of Strongly Localized Fields,” Phys. Rev. Lett.81, 1738–1741 (1998).
[CrossRef]

A. Rohrbach, “Stiffness of Optical Traps: Quantitative Agreement between Experiment and Electromagnetic Theory,” Phys. Rev. Lett.95, 168102 (2005).
[CrossRef] [PubMed]

C. Bechinger, M. Brunner, and P. Leiderer, “Phase Behavior of Two-Dimensional Colloidal Systems in the Presence of Periodic Light Fields,” Phys. Rev. Lett.86, 930–934 (2001).
[CrossRef] [PubMed]

T. Bohlein and C. Bechinger, “Experimental observation of directional locking and dynamical ordering of colloidal monolayers driven across quasiperiodic substrates,” Phys. Rev. Lett.109, 058301 (2012).
[CrossRef] [PubMed]

E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, and H.-J. Güntherodt, “Velocity Dependence of Atomic Friction,” Phys. Rev. Lett.84, 1172–1175 (2000).
[CrossRef] [PubMed]

A. Curran, M. P. Lee, R. Di Leonardo, J. M. Cooper, and M. J. Padgett, “Partial synchronization of stochastic oscillators through hydrodynamic coupleing,” Phys. Rev. Lett.108, 240601 (2012).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24, 156–159 (1970).
[CrossRef]

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett.89, 128301 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75, 2787 (2004).
[CrossRef]

Soft Matter (1)

R. D. L. Hanes, C. Dalle-Ferier, M. Schmiedeberg, M. C. Jenkins, and S.U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter8, 2714–2723 (2012).
[CrossRef]

Other (3)

V. K. Vlasko-Vlasov, A. E. Koshelev, U. Welp, W. Kwok, A. Rydh, G. W. Crabtree, and K. Kadowaki, “Magneto-optical imaging of Josephson vortices in layered superconductors,” in Magneto-Optical Imaging, T. H. Johansed and D. V. Shantsev, eds. (Springer, 2004), pp. 39–46.
[CrossRef]

E. Weeks, Particle tracking using IDL, http://www.physics.emory.edu/weeks/idl/ .

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Diagram of optical setup (not to scale); see also text in section 3.2. (b) Typical experimental image (cropped from the full CMOS chip) indicating the particle trajectory and the extent and position of the optical trap as indicated by the dotted lines. The corresponding graph of the particle velocity against position for one data set is also shown. (c) Diagram of sample cell.

Fig. 2
Fig. 2

Typical experimental data as obtained from flow experiments for single optical traps. (a) The particle position as a function of time: ○ experimental data; solid lines are linear fits of equal gradient, indicating that the particle velocity equals the flow velocity before and after the optical trap. The right panel shows the corresponding potential, U(x). (b) The particle velocity v(x) as a function of the position; ○ experimental data; the solid line is a fit based on a Gaussian optical trap according to Eq. (4). The top panel again shows U(x).

Fig. 3
Fig. 3

(a) The trapping stiffness k (○ flow measurements; • thermal equilibrium measurements) and (b) the depth of the optical trap U0 as a function of the laser power. The solid lines are linear fits to the data.

Fig. 4
Fig. 4

The particle velocity v(x) as a function of the position x when driven at a flow velocity of ∼ 11 μm s−1 through two different optical landscapes, where δij is the distance between traps i and j: (a) two pairs of overlapping optical traps positioned at δ12 = δ34 = 3μm and δ23 = 10μm. ○ experimental data, — is a fit according to Eq. (4). (b) Four traps with spacing δ = 3μm. ○ experimental data, - - - is a fit according to Eq. (4), — is a sinusoidal fit. The top panels in (a) and (b) show a comparison between the potentials, U(x), as obtained from the experiments (—) and predicted by Eq. (3) (□).

Fig. 5
Fig. 5

The particle velocity v(x) as a function of the position x when driven at a flow velocity of ∼ 5 μm s−1 through two different random optical landscapes: ○ experimental data, — is a fit according to Eq. (4). (a) six identical traps with random spacing. (b) four traps with random spacing, k and U0. The top panels in (a) and (b) show a comparison between the potentials, U(x), as obtained from the experiments (—) and predicted by Eq. (3) (□).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

v ( x ) = v flow + F opt ( x ) ξ .
U ( x ) = U 0 ( 1 exp [ k ( x x 0 ) 2 2 U 0 ] ) ,
U N ( x ) = j = 1 N U 0 , j ( 1 exp [ k j ( x x 0 , j ) 2 2 U 0 , j ] ) .
v ( x ) = v flow + 1 ξ j = 1 N ( k j ( x x 0 , j ) exp [ k j ( x x 0 , j ) 2 2 U 0 , j ] ) .

Metrics