Abstract

The nonlinear optical properties of nanocomposites consisting of non-spherical silver nanoparticles in glass matrix have been studied using the femtosecond Z-scan technique. The spheroidal nanoparticles were uniformly oriented along a common direction. By polarization sensitive studies, longitudinal and transverse plasmon resonances can be addressed separately. A sign reversal in optical nonlinearity from negative to positive is observed while switching the light interaction from near to non-resonant regime, which can be done by simply rotating the light polarization by 90°. Studying samples with different aspect ratio, we obtained the dispersion of third-order nonlinearity in the near-resonant regime, showing an enhancement of the nonlinear processes by more than two orders of magnitude due to the electric field enhancement at the surface plasmon resonance.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Ricard, Ph. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett.10(10), 511–513 (1985).
    [CrossRef] [PubMed]
  2. Y. Hamanaka, A. Nakamura, S. Omi, N. Del Fatti, F. Vallee, and C. Flytzanis, “Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass,” Appl. Phys. Lett.75(12), 1712–1714 (1999).
    [CrossRef]
  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  4. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  5. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  6. H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 83107–83109 (2006).
    [CrossRef]
  7. M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single rods,” Phys. Rev. B73, 155419 (2006).
    [CrossRef]
  8. J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold rods,” Appl. Phys. Lett.96(26), 263103 (2010).
    [CrossRef]
  9. M. Kyoung and M. Lee, “Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique,” Opt. Commun.171(1-3), 145–148 (1999).
    [CrossRef]
  10. R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282(9), 1909–1912 (2009).
    [CrossRef]
  11. A. Stalmashonak, G. Seifert, A. A. Ünal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glass with silver nanoparticles,” Appl. Opt.48(25), F37–F42 (2009).
    [CrossRef]
  12. H. Hofmeister, W.-G. Drost, and A. Berger, “Oriented prolate silver nanoparticles in glass-characteristics of novel dichoric polarizers,” Nanostr. Mat.12(1-4), 207–210 (1999).
    [CrossRef]
  13. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
    [CrossRef]
  14. M. Yin, H. P. Lin, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B70(4), 587–591 (2000).
    [CrossRef]
  15. R. del Coso and J. Solis, “Relation between nonlinear refractive index and third-order susceptibility in absorbing media,” J. Opt. Soc. Am. B21(3), 640–644 (2004).
    [CrossRef]
  16. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process.47(4), 347–357 (1988).
    [CrossRef]
  17. Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, “Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles,” Phys. Rev. B79(4), 045410 (2009).
    [CrossRef]
  18. Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites,” J. Lumin.87–89, 859–861 (2000).
    [CrossRef]
  19. D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, “Cancelation of photoinduced absorption in metal nanoparticles composites through a counterintuitive consequence of local fields,” J. Opt. Soc. Am. B14(7), 1625–1631 (1997).
    [CrossRef]

2010

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold rods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

2009

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282(9), 1909–1912 (2009).
[CrossRef]

Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, “Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles,” Phys. Rev. B79(4), 045410 (2009).
[CrossRef]

A. Stalmashonak, G. Seifert, A. A. Ünal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glass with silver nanoparticles,” Appl. Opt.48(25), F37–F42 (2009).
[CrossRef]

2006

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 83107–83109 (2006).
[CrossRef]

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single rods,” Phys. Rev. B73, 155419 (2006).
[CrossRef]

2004

2003

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

2000

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites,” J. Lumin.87–89, 859–861 (2000).
[CrossRef]

M. Yin, H. P. Lin, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B70(4), 587–591 (2000).
[CrossRef]

1999

Y. Hamanaka, A. Nakamura, S. Omi, N. Del Fatti, F. Vallee, and C. Flytzanis, “Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass,” Appl. Phys. Lett.75(12), 1712–1714 (1999).
[CrossRef]

H. Hofmeister, W.-G. Drost, and A. Berger, “Oriented prolate silver nanoparticles in glass-characteristics of novel dichoric polarizers,” Nanostr. Mat.12(1-4), 207–210 (1999).
[CrossRef]

M. Kyoung and M. Lee, “Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique,” Opt. Commun.171(1-3), 145–148 (1999).
[CrossRef]

1997

1990

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

1988

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process.47(4), 347–357 (1988).
[CrossRef]

1985

Abdolvand, A.

Berger, A.

H. Hofmeister, W.-G. Drost, and A. Berger, “Oriented prolate silver nanoparticles in glass-characteristics of novel dichoric polarizers,” Nanostr. Mat.12(1-4), 207–210 (1999).
[CrossRef]

Bookey, H. T.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282(9), 1909–1912 (2009).
[CrossRef]

Boyd, R. W.

Cheang-Wong, J. C.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282(9), 1909–1912 (2009).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Crespo-Sosa, A.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282(9), 1909–1912 (2009).
[CrossRef]

del Coso, R.

Del Fatti, N.

Y. Hamanaka, A. Nakamura, S. Omi, N. Del Fatti, F. Vallee, and C. Flytzanis, “Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass,” Appl. Phys. Lett.75(12), 1712–1714 (1999).
[CrossRef]

Drost, W.-G.

H. Hofmeister, W.-G. Drost, and A. Berger, “Oriented prolate silver nanoparticles in glass-characteristics of novel dichoric polarizers,” Nanostr. Mat.12(1-4), 207–210 (1999).
[CrossRef]

Elim, H. I.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 83107–83109 (2006).
[CrossRef]

Fischer, G.

Flytzanis, C.

Y. Hamanaka, A. Nakamura, S. Omi, N. Del Fatti, F. Vallee, and C. Flytzanis, “Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass,” Appl. Phys. Lett.75(12), 1712–1714 (1999).
[CrossRef]

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process.47(4), 347–357 (1988).
[CrossRef]

D. Ricard, Ph. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett.10(10), 511–513 (1985).
[CrossRef] [PubMed]

Graener, H.

Gregory, D. A.

Guillet, Y.

Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, “Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles,” Phys. Rev. B79(4), 045410 (2009).
[CrossRef]

Guyot-Sionnest, P.

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single rods,” Phys. Rev. B73, 155419 (2006).
[CrossRef]

Hache, F.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process.47(4), 347–357 (1988).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Hamanaka, Y.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites,” J. Lumin.87–89, 859–861 (2000).
[CrossRef]

Y. Hamanaka, A. Nakamura, S. Omi, N. Del Fatti, F. Vallee, and C. Flytzanis, “Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass,” Appl. Phys. Lett.75(12), 1712–1714 (1999).
[CrossRef]

Hayashi, N.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites,” J. Lumin.87–89, 859–861 (2000).
[CrossRef]

Hofmeister, H.

H. Hofmeister, W.-G. Drost, and A. Berger, “Oriented prolate silver nanoparticles in glass-characteristics of novel dichoric polarizers,” Nanostr. Mat.12(1-4), 207–210 (1999).
[CrossRef]

Ji, W.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 83107–83109 (2006).
[CrossRef]

M. Yin, H. P. Lin, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B70(4), 587–591 (2000).
[CrossRef]

Kar, A. K.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282(9), 1909–1912 (2009).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Kreibig, U.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process.47(4), 347–357 (1988).
[CrossRef]

Kyoung, M.

M. Kyoung and M. Lee, “Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique,” Opt. Commun.171(1-3), 145–148 (1999).
[CrossRef]

Lee, J.-Y.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 83107–83109 (2006).
[CrossRef]

Lee, M.

M. Kyoung and M. Lee, “Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique,” Opt. Commun.171(1-3), 145–148 (1999).
[CrossRef]

Li, J.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold rods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

Li, Z.-Y.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold rods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

Lin, H. P.

M. Yin, H. P. Lin, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B70(4), 587–591 (2000).
[CrossRef]

Liu, M.

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single rods,” Phys. Rev. B73, 155419 (2006).
[CrossRef]

Liu, S.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold rods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

Liu, Y.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold rods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

Lopez-Suarez, A.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282(9), 1909–1912 (2009).
[CrossRef]

McCarthy, J.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282(9), 1909–1912 (2009).
[CrossRef]

Mi, J.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 83107–83109 (2006).
[CrossRef]

Nakamura, A.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites,” J. Lumin.87–89, 859–861 (2000).
[CrossRef]

Y. Hamanaka, A. Nakamura, S. Omi, N. Del Fatti, F. Vallee, and C. Flytzanis, “Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass,” Appl. Phys. Lett.75(12), 1712–1714 (1999).
[CrossRef]

Oliver, A.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282(9), 1909–1912 (2009).
[CrossRef]

Omi, S.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites,” J. Lumin.87–89, 859–861 (2000).
[CrossRef]

Y. Hamanaka, A. Nakamura, S. Omi, N. Del Fatti, F. Vallee, and C. Flytzanis, “Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass,” Appl. Phys. Lett.75(12), 1712–1714 (1999).
[CrossRef]

Palpant, B.

Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, “Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles,” Phys. Rev. B79(4), 045410 (2009).
[CrossRef]

Park, S.

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single rods,” Phys. Rev. B73, 155419 (2006).
[CrossRef]

Pelton, M.

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single rods,” Phys. Rev. B73, 155419 (2006).
[CrossRef]

Podlipensky, A.

Rangel-Rojo, R.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282(9), 1909–1912 (2009).
[CrossRef]

Rashidi-Huyeh, M.

Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, “Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles,” Phys. Rev. B79(4), 045410 (2009).
[CrossRef]

Ricard, D.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process.47(4), 347–357 (1988).
[CrossRef]

D. Ricard, Ph. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett.10(10), 511–513 (1985).
[CrossRef] [PubMed]

Rodriguez-Fernandez, L.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282(9), 1909–1912 (2009).
[CrossRef]

Rodriguez-Iglesias, V.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282(9), 1909–1912 (2009).
[CrossRef]

Roussignol, Ph.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Scherer, N. F.

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single rods,” Phys. Rev. B73, 155419 (2006).
[CrossRef]

Seifert, G.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Silva-Pereyra, H. G.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282(9), 1909–1912 (2009).
[CrossRef]

Skrzypczak, U.

Smith, D. D.

Solis, J.

Stalmashonak, A.

Tang, S. H.

M. Yin, H. P. Lin, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B70(4), 587–591 (2000).
[CrossRef]

Ünal, A. A.

Vallee, F.

Y. Hamanaka, A. Nakamura, S. Omi, N. Del Fatti, F. Vallee, and C. Flytzanis, “Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass,” Appl. Phys. Lett.75(12), 1712–1714 (1999).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Wei, T.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Yang, J.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 83107–83109 (2006).
[CrossRef]

Yin, M.

M. Yin, H. P. Lin, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B70(4), 587–591 (2000).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Zhou, F.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold rods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M. Yin, H. P. Lin, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B70(4), 587–591 (2000).
[CrossRef]

Appl. Phys. Lett.

Y. Hamanaka, A. Nakamura, S. Omi, N. Del Fatti, F. Vallee, and C. Flytzanis, “Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass,” Appl. Phys. Lett.75(12), 1712–1714 (1999).
[CrossRef]

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 83107–83109 (2006).
[CrossRef]

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold rods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process.47(4), 347–357 (1988).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

J. Lumin.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites,” J. Lumin.87–89, 859–861 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Nanostr. Mat.

H. Hofmeister, W.-G. Drost, and A. Berger, “Oriented prolate silver nanoparticles in glass-characteristics of novel dichoric polarizers,” Nanostr. Mat.12(1-4), 207–210 (1999).
[CrossRef]

Opt. Commun.

M. Kyoung and M. Lee, “Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique,” Opt. Commun.171(1-3), 145–148 (1999).
[CrossRef]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282(9), 1909–1912 (2009).
[CrossRef]

Opt. Lett.

Phys. Rev. B

Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, “Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles,” Phys. Rev. B79(4), 045410 (2009).
[CrossRef]

M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single rods,” Phys. Rev. B73, 155419 (2006).
[CrossRef]

Other

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Illustration of definition of linear laser polarization: parallel means electric field vector of laser light parallel to the long axes of the uniformly oriented elongated Ag nanoparticles; (b), (c): schematic representation of surface plasmon resonances of the different samples and photon energies of the used lasers for comparison, shown for laser polarization parallel and perpendicular to the long axis of the nanoparticles.

Fig. 2
Fig. 2

Closed (a) and open (b) aperture Z-scan signals using 800nm pump wavelength measured on the samples LSPR_550 (main panels) and LSPR_450 (insets). The red circles and blue squares represent the data points obtained in p|| and p configuration, respectively. The solid lines refer to numerical simulations to derive the nonlinear material parameters (see text below); (c) conventional extinction spectra of the LSPR of the two samples.

Fig. 3
Fig. 3

Closed and open aperture Z-scan at pump wavelength λ = 1030 nm, in p|| and p configuration, for sample LSPR_1200. Red circles and blue squares are data points, solid lines are fit curves (see text for details).

Fig. 4
Fig. 4

Imaginary (a) and real (b) part of χ(3) in esu units, calculated from the values of n and b (as given in Table 1) and the linear absorption coefficients at the respective laser wavelengths; the two smallest values in (b) are additionally shown after multiplication with a factor of 100 to make clear that they are positive. Dashed curves are arbitrarily chosen Lorentzian curves, as a guide to the eye to illustrate the dispersion behaviour around SPR (Δ|| = 0, vertical lines).

Tables (1)

Tables Icon

Table 1 Spectral gap values and nonlinear absorption coefficients calculated for all samples at 800nm and 1030nm excitation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T( z )=1+ 4ΔΦz/ z 0 [ ( z/ z 0 ) 2 +9 ][ ( z/ z 0 ) 2 +1 ]
Δ Φ ||, =( 2π /λ ) n 2||, I 0 L eff
χ eff (3) =p f 2 | f | 2 χ m (3)

Metrics