Abstract

We demonstrate the fabrication of high-index-contrast microfiber Bragg gratings (MFBGs) using phase-mask technique under seconds’ femtosecond laser ablation to drill periodic nanoholes in microfibers and study the aging properties of the gratings at room temperature. These sub-micrometer-diameter holes, benefited from the resolution of femtosecond laser micromachining beyond-diffraction limit, results in an effective negative refractive index change Δn ~-10−3. Transmission dips over −23 dB are achieved for the gratings with excellent Gaussian apodization and 3-dB reflection bandwidths up to 1.14 nm. Moreover, the grating reflectivity increased by 3 dB, the resonant wavelength blue-shifted 1.35 nm after two weeks’ placement of grating at room temperature and these gratings exhibit excellent stability in the following time. This makes them attractive elements in sensing, nanophotonics and nonlinear optics.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O. K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  2. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 043001 (2010).
    [CrossRef]
  3. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett.36(16), 3115–3117 (2011).
    [CrossRef] [PubMed]
  4. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express19(15), 14040–14050 (2011).
    [CrossRef] [PubMed]
  5. M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express19(16), 15621–15626 (2011).
    [CrossRef] [PubMed]
  6. Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. Wang, P. Shum, and X. Zhang, “Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating,” Opt. Express18(25), 26345–26350 (2010).
    [CrossRef] [PubMed]
  7. Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B.-O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express19(19), 18577–18583 (2011).
    [CrossRef] [PubMed]
  8. R. Ahmad, M. Rochette, and C. Baker, “Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires,” Opt. Lett.36(15), 2886–2888 (2011).
    [CrossRef] [PubMed]
  9. R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As(2)Se(3) chalcogenide microwires,” Appl. Phys. Lett.99(6), 061109 (2011).
    [CrossRef]
  10. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett.35(7), 1007–1009 (2010).
    [CrossRef] [PubMed]
  11. Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-Efficiency Ultraviolet Inscription of Bragg Gratings in Microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
    [CrossRef]
  12. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev.2(4), 275–289 (2008).
    [CrossRef]
  13. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
    [CrossRef]
  14. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express13(14), 5377–5386 (2005).
    [CrossRef] [PubMed]
  15. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A11(4), 1307–1320 (1994).
    [CrossRef]
  16. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]

2012

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-Efficiency Ultraviolet Inscription of Bragg Gratings in Microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

2011

2010

2008

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev.2(4), 275–289 (2008).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

2005

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

1994

Ahmad, R.

R. Ahmad, M. Rochette, and C. Baker, “Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires,” Opt. Lett.36(15), 2886–2888 (2011).
[CrossRef] [PubMed]

R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As(2)Se(3) chalcogenide microwires,” Appl. Phys. Lett.99(6), 061109 (2011).
[CrossRef]

Baker, C.

Brambilla, G.

Canning, J.

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev.2(4), 275–289 (2008).
[CrossRef]

de Sterke, C. M.

Ding, M.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Fang, X.

Gao, S.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Grobnic, D.

Guan, B. O.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-Efficiency Ultraviolet Inscription of Bragg Gratings in Microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

Guan, B.-O.

Hakuta, K.

Jin, L.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-Efficiency Ultraviolet Inscription of Bragg Gratings in Microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B.-O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express19(19), 18577–18583 (2011).
[CrossRef] [PubMed]

Kawai, Y.

Le Kien, F.

Li, J.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-Efficiency Ultraviolet Inscription of Bragg Gratings in Microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B.-O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express19(19), 18577–18583 (2011).
[CrossRef] [PubMed]

Liao, C. R.

Lin, B.

Liu, Y.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Meng, C.

Mihailov, S.

Miyazaki, H. T.

Nakajima, K.

Nayak, K. P.

Poladian, L.

Ran, Y.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-Efficiency Ultraviolet Inscription of Bragg Gratings in Microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B.-O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express19(19), 18577–18583 (2011).
[CrossRef] [PubMed]

Rochette, M.

R. Ahmad, M. Rochette, and C. Baker, “Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires,” Opt. Lett.36(15), 2886–2888 (2011).
[CrossRef] [PubMed]

R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As(2)Se(3) chalcogenide microwires,” Appl. Phys. Lett.99(6), 061109 (2011).
[CrossRef]

Shum, P.

Sipe, J. E.

Smelser, C.

Sugimoto, Y.

Sun, L. P.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-Efficiency Ultraviolet Inscription of Bragg Gratings in Microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

Sun, L.-P.

Tan, Y. N.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-Efficiency Ultraviolet Inscription of Bragg Gratings in Microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

Tan, Y.-N.

Tjin, S. C.

Tong, L.

Wang, D. N.

Wang, G.

Xiao, Y.

Yu, H.

Zervas, M. N.

Zhang, A. P.

Zhang, H.

Zhang, X.

Zhang, Y.

Appl. Phys. Lett.

R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As(2)Se(3) chalcogenide microwires,” Appl. Phys. Lett.99(6), 061109 (2011).
[CrossRef]

IEEE Photon. J.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-Efficiency Ultraviolet Inscription of Bragg Gratings in Microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

J. Lightwave Technol.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

J. Opt.

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 043001 (2010).
[CrossRef]

J. Opt. Soc. Am. A

Laser Photon. Rev.

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev.2(4), 275–289 (2008).
[CrossRef]

Nat. Photonics

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

A. O. K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Local optical (a, d) and scanning electron (b, c) microscope images of a MFBG. (a) and (b) The central part of the grating; (c) The grating edge. (d) Side view of the MFBG. The red arrow denotes the incident direction of Fs-laser.

Fig. 2
Fig. 2

Illustration of Fs-laser ablation. (a) The profile of Gaussian beam intensity in x-axis. (b) The exposure area of Fs-laser.

Fig. 3
Fig. 3

Reflection (a) and transmission (b) spectra of the MFBG. The blue-dotted line show the calculated spectrum assuming effective sinusoidal modulation of effective index under Gaussian apodization.

Fig. 4
Fig. 4

(a) Reflection spectra of MFBG after inscription (black curve) and two weeks’ placement (red curve) at room temperature, respectively. (b) Reflection spectra under the injection of transvers-electric (TE, blue curve) and transverse-magnetic (TM, red curve) waves.

Fig. 5
Fig. 5

(a) Schematic diagram of the formation of MFBG. The red curve denotes the intensity of interference field after the phase mask. (b) Variation of effective RI change along the grating after the fabrication (black curve) and two weeks (red curve).

Fig. 6
Fig. 6

Fundamental modes of a 3.3-μm-diameter silica microfiber with an air-slit (wavelength @1550 nm). (a) TE mode; (b) TM mode.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ= ω 4 dxdyΔε(x,y) e f (x,y) e b (x,y)

Metrics