Abstract

We report on the design and experimental demonstration of a system based on an L3 cavity coupled to a photonic crystal waveguide for in-plane single-photon emission. A theoretical and experimental investigation for all the cavity modes within the photonic bandgap is presented for stand-alone L3 cavity structures. We provide a detailed discussion supported by finite-difference time-domain calculations of the evanescent coupling of an L3 cavity to a photonic crystal waveguide for on-chip single-photon transmission. Such a system is demonstrated experimentally by the in-plane transmission of quantum light from an InAs quantum dot coupled to the L3 cavity mode.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. O’Brien, “Optical quantum computing,” Science318(5856), 1567–1570 (2007).
    [CrossRef] [PubMed]
  2. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001).
    [CrossRef] [PubMed]
  3. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
    [CrossRef]
  4. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320(5876), 646–649 (2008).
    [CrossRef] [PubMed]
  5. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics1(12), 704–708 (2007).
    [CrossRef]
  6. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science295(5552), 102–105 (2002).
    [CrossRef] [PubMed]
  7. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1(4), 215–223 (2007).
    [CrossRef]
  8. M. A. Pooley, D. J. P. Ellis, R. B. Patel, A. J. Bennett, K. H. A. Chan, I. Farrer, D. A. Ritchie, and A. J. Shields, “Controlled-NOT gate operating with single photons,” Appl. Phys. Lett.100(21), 211103 (2012).
    [CrossRef]
  9. J. D. Joannopoulos, P. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature386(6621), 143–149 (1997).
    [CrossRef]
  10. S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 microm,” Opt. Lett.33(16), 1908–1910 (2008).
    [CrossRef] [PubMed]
  11. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
    [CrossRef] [PubMed]
  12. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 mum wavelengths,” Opt. Lett.26(5), 286–288 (2001).
    [CrossRef] [PubMed]
  13. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
    [CrossRef] [PubMed]
  14. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. L. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science308(5725), 1158–1161 (2005).
    [CrossRef] [PubMed]
  15. L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett.91(12), 123115 (2007).
    [CrossRef]
  16. A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett.99(26), 261108 (2011).
    [CrossRef]
  17. M. G. Banaee, A. G. Pattantyus-Abraham, M. V. McCutcheon, G. W. Rieger, and J. F. Young, “Efficient coupling of photonic crystal microcavity modes to a ridge waveguide,” Appl. Phys. Lett.90(19), 193106 (2007).
    [CrossRef]
  18. S. Olivier, C. Smith, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design,” IEEE J. Quantum Electron.38(7), 816–824 (2002).
    [CrossRef]
  19. A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
    [CrossRef]
  20. W. Fan, Z. Hao, E. Stock, J. Kang, Y. Luo, and D. Bimberg, “Comparison between two types of photonic-crystal cavities for single-photon emitters,” Semicond. Sci. Technol.26(1), 014014 (2011).
    [CrossRef]
  21. L. Ramunno and S. Hughes, “Disorder-induced resonance shifts in high-index-contrast photonic crystal cavities,” Phys. Rev. B79(16), 161303 (2009).
    [CrossRef]
  22. U. K. Khankhoje, S.-H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology21(6), 065202 (2010).
    [CrossRef] [PubMed]
  23. J. Vučković and Y. Yamamoto, “Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett.82(15), 2374–2376 (2003).
    [CrossRef]
  24. C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoğlu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett.85(16), 3423–3425 (2004).
    [CrossRef]
  25. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  26. E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express13(13), 5064–5073 (2005).
    [CrossRef] [PubMed]
  27. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
    [CrossRef] [PubMed]
  28. P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev.2(6), 514–526 (2008).
    [CrossRef]
  29. R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express19(6), 5398–5409 (2011).
    [CrossRef] [PubMed]
  30. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett.90(7), 073102 (2007).
    [CrossRef]
  31. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express15(9), 5550–5558 (2007).
    [CrossRef] [PubMed]
  32. M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106(22), 227402 (2011).
    [CrossRef] [PubMed]
  33. S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3(12), 724–728 (2009).
    [CrossRef]

2012

M. A. Pooley, D. J. P. Ellis, R. B. Patel, A. J. Bennett, K. H. A. Chan, I. Farrer, D. A. Ritchie, and A. J. Shields, “Controlled-NOT gate operating with single photons,” Appl. Phys. Lett.100(21), 211103 (2012).
[CrossRef]

2011

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett.99(26), 261108 (2011).
[CrossRef]

W. Fan, Z. Hao, E. Stock, J. Kang, Y. Luo, and D. Bimberg, “Comparison between two types of photonic-crystal cavities for single-photon emitters,” Semicond. Sci. Technol.26(1), 014014 (2011).
[CrossRef]

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106(22), 227402 (2011).
[CrossRef] [PubMed]

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express19(6), 5398–5409 (2011).
[CrossRef] [PubMed]

2010

U. K. Khankhoje, S.-H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology21(6), 065202 (2010).
[CrossRef] [PubMed]

2009

L. Ramunno and S. Hughes, “Disorder-induced resonance shifts in high-index-contrast photonic crystal cavities,” Phys. Rev. B79(16), 161303 (2009).
[CrossRef]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3(12), 724–728 (2009).
[CrossRef]

2008

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev.2(6), 514–526 (2008).
[CrossRef]

S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 microm,” Opt. Lett.33(16), 1908–1910 (2008).
[CrossRef] [PubMed]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320(5876), 646–649 (2008).
[CrossRef] [PubMed]

2007

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics1(12), 704–708 (2007).
[CrossRef]

J. L. O’Brien, “Optical quantum computing,” Science318(5856), 1567–1570 (2007).
[CrossRef] [PubMed]

M. G. Banaee, A. G. Pattantyus-Abraham, M. V. McCutcheon, G. W. Rieger, and J. F. Young, “Efficient coupling of photonic crystal microcavity modes to a ridge waveguide,” Appl. Phys. Lett.90(19), 193106 (2007).
[CrossRef]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1(4), 215–223 (2007).
[CrossRef]

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett.91(12), 123115 (2007).
[CrossRef]

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express15(9), 5550–5558 (2007).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett.90(7), 073102 (2007).
[CrossRef]

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

2005

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express13(13), 5064–5073 (2005).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. L. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

2004

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoğlu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett.85(16), 3423–3425 (2004).
[CrossRef]

2003

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

J. Vučković and Y. Yamamoto, “Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett.82(15), 2374–2376 (2003).
[CrossRef]

2002

S. Olivier, C. Smith, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design,” IEEE J. Quantum Electron.38(7), 816–824 (2002).
[CrossRef]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science295(5552), 102–105 (2002).
[CrossRef] [PubMed]

2001

1997

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
[CrossRef]

J. D. Joannopoulos, P. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature386(6621), 143–149 (1997).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Alloing, B.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett.91(12), 123115 (2007).
[CrossRef]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Atatüre, M.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. L. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Ates, S.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3(12), 724–728 (2009).
[CrossRef]

Atlasov, K. A.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106(22), 227402 (2011).
[CrossRef] [PubMed]

Badolato, A.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. L. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoğlu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett.85(16), 3423–3425 (2004).
[CrossRef]

Balet, L.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett.91(12), 123115 (2007).
[CrossRef]

Banaee, M. G.

M. G. Banaee, A. G. Pattantyus-Abraham, M. V. McCutcheon, G. W. Rieger, and J. F. Young, “Efficient coupling of photonic crystal microcavity modes to a ridge waveguide,” Appl. Phys. Lett.90(19), 193106 (2007).
[CrossRef]

Beattie, N. S.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science295(5552), 102–105 (2002).
[CrossRef] [PubMed]

Benisty, H.

S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 microm,” Opt. Lett.33(16), 1908–1910 (2008).
[CrossRef] [PubMed]

S. Olivier, C. Smith, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design,” IEEE J. Quantum Electron.38(7), 816–824 (2002).
[CrossRef]

Bennett, A. J.

M. A. Pooley, D. J. P. Ellis, R. B. Patel, A. J. Bennett, K. H. A. Chan, I. Farrer, D. A. Ritchie, and A. J. Shields, “Controlled-NOT gate operating with single photons,” Appl. Phys. Lett.100(21), 211103 (2012).
[CrossRef]

Biasiol, G.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106(22), 227402 (2011).
[CrossRef] [PubMed]

Bimberg, D.

W. Fan, Z. Hao, E. Stock, J. Kang, Y. Luo, and D. Bimberg, “Comparison between two types of photonic-crystal cavities for single-photon emitters,” Semicond. Sci. Technol.26(1), 014014 (2011).
[CrossRef]

Bose, R.

Bouwmeester, D.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics1(12), 704–708 (2007).
[CrossRef]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
[CrossRef]

Calic, M.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106(22), 227402 (2011).
[CrossRef] [PubMed]

Chalcraft, A. R. A.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Chan, K. H. A.

M. A. Pooley, D. J. P. Ellis, R. B. Patel, A. J. Bennett, K. H. A. Chan, I. Farrer, D. A. Ritchie, and A. J. Shields, “Controlled-NOT gate operating with single photons,” Appl. Phys. Lett.100(21), 211103 (2012).
[CrossRef]

Chauvin, N.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett.91(12), 123115 (2007).
[CrossRef]

Chow, E.

Coldren, L. A.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics1(12), 704–708 (2007).
[CrossRef]

Combrié, S.

Cooper, K.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science295(5552), 102–105 (2002).
[CrossRef] [PubMed]

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320(5876), 646–649 (2008).
[CrossRef] [PubMed]

De Rossi, A.

Dreiser, J.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. L. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Dwir, B.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106(22), 227402 (2011).
[CrossRef] [PubMed]

Eibl, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
[CrossRef]

Ellis, D. J. P.

M. A. Pooley, D. J. P. Ellis, R. B. Patel, A. J. Bennett, K. H. A. Chan, I. Farrer, D. A. Ritchie, and A. J. Shields, “Controlled-NOT gate operating with single photons,” Appl. Phys. Lett.100(21), 211103 (2012).
[CrossRef]

Englund, D.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett.90(7), 073102 (2007).
[CrossRef]

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express15(9), 5550–5558 (2007).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

Fan, S.

J. D. Joannopoulos, P. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature386(6621), 143–149 (1997).
[CrossRef]

Fan, W.

W. Fan, Z. Hao, E. Stock, J. Kang, Y. Luo, and D. Bimberg, “Comparison between two types of photonic-crystal cavities for single-photon emitters,” Semicond. Sci. Technol.26(1), 014014 (2011).
[CrossRef]

Faraon, A.

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express15(9), 5550–5558 (2007).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett.90(7), 073102 (2007).
[CrossRef]

Farrer, I.

M. A. Pooley, D. J. P. Ellis, R. B. Patel, A. J. Bennett, K. H. A. Chan, I. Farrer, D. A. Ritchie, and A. J. Shields, “Controlled-NOT gate operating with single photons,” Appl. Phys. Lett.100(21), 211103 (2012).
[CrossRef]

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett.99(26), 261108 (2011).
[CrossRef]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

Felici, M.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106(22), 227402 (2011).
[CrossRef] [PubMed]

Fiore, A.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett.91(12), 123115 (2007).
[CrossRef]

Forchel, A.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3(12), 724–728 (2009).
[CrossRef]

Fox, A. M.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Francardi, M.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett.91(12), 123115 (2007).
[CrossRef]

Fushman, I.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett.90(7), 073102 (2007).
[CrossRef]

Gallo, P.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106(22), 227402 (2011).
[CrossRef] [PubMed]

Gerardino, A.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett.91(12), 123115 (2007).
[CrossRef]

Gibbs, H. M.

U. K. Khankhoje, S.-H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology21(6), 065202 (2010).
[CrossRef] [PubMed]

Griffiths, J. P.

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett.99(26), 261108 (2011).
[CrossRef]

Hao, Z.

W. Fan, Z. Hao, E. Stock, J. Kang, Y. Luo, and D. Bimberg, “Comparison between two types of photonic-crystal cavities for single-photon emitters,” Semicond. Sci. Technol.26(1), 014014 (2011).
[CrossRef]

Hendrickson, J.

U. K. Khankhoje, S.-H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology21(6), 065202 (2010).
[CrossRef] [PubMed]

Hennessy, K.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. L. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Höfling, S.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3(12), 724–728 (2009).
[CrossRef]

Hopkinson, M.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Houdré, R.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett.91(12), 123115 (2007).
[CrossRef]

S. Olivier, C. Smith, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design,” IEEE J. Quantum Electron.38(7), 816–824 (2002).
[CrossRef]

Hu, E.

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoğlu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett.85(16), 3423–3425 (2004).
[CrossRef]

Hu, E. L.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. L. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Hughes, S.

L. Ramunno and S. Hughes, “Disorder-induced resonance shifts in high-index-contrast photonic crystal cavities,” Phys. Rev. B79(16), 161303 (2009).
[CrossRef]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Hugonin, J. P.

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev.2(6), 514–526 (2008).
[CrossRef]

Imamoglu, A.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. L. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoğlu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett.85(16), 3423–3425 (2004).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Jones, G. A. C.

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett.99(26), 261108 (2011).
[CrossRef]

Kalliakos, S.

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett.99(26), 261108 (2011).
[CrossRef]

Kang, J.

W. Fan, Z. Hao, E. Stock, J. Kang, Y. Luo, and D. Bimberg, “Comparison between two types of photonic-crystal cavities for single-photon emitters,” Semicond. Sci. Technol.26(1), 014014 (2011).
[CrossRef]

Kapon, E.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106(22), 227402 (2011).
[CrossRef] [PubMed]

Kardynal, B. E.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science295(5552), 102–105 (2002).
[CrossRef] [PubMed]

Khankhoje, U. K.

U. K. Khankhoje, S.-H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology21(6), 065202 (2010).
[CrossRef] [PubMed]

Khitrova, G.

U. K. Khankhoje, S.-H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology21(6), 065202 (2010).
[CrossRef] [PubMed]

Kim, S.-H.

U. K. Khankhoje, S.-H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology21(6), 065202 (2010).
[CrossRef] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001).
[CrossRef] [PubMed]

Krauss, T.

S. Olivier, C. Smith, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design,” IEEE J. Quantum Electron.38(7), 816–824 (2002).
[CrossRef]

Krauss, T. F.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001).
[CrossRef] [PubMed]

Lalanne, P.

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev.2(6), 514–526 (2008).
[CrossRef]

Lam, S.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Le Thomas, N.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett.91(12), 123115 (2007).
[CrossRef]

Li, L. H.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett.91(12), 123115 (2007).
[CrossRef]

Lin, S. Y.

Liu, H.-Y.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Lobo, C. J.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science295(5552), 102–105 (2002).
[CrossRef] [PubMed]

Löffler, A.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3(12), 724–728 (2009).
[CrossRef]

Luo, Y.

W. Fan, Z. Hao, E. Stock, J. Kang, Y. Luo, and D. Bimberg, “Comparison between two types of photonic-crystal cavities for single-photon emitters,” Semicond. Sci. Technol.26(1), 014014 (2011).
[CrossRef]

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
[CrossRef]

McCutcheon, M. V.

M. G. Banaee, A. G. Pattantyus-Abraham, M. V. McCutcheon, G. W. Rieger, and J. F. Young, “Efficient coupling of photonic crystal microcavity modes to a ridge waveguide,” Appl. Phys. Lett.90(19), 193106 (2007).
[CrossRef]

Michler, P.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3(12), 724–728 (2009).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001).
[CrossRef] [PubMed]

Monat, C.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett.91(12), 123115 (2007).
[CrossRef]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

O’Brien, D.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

O’Brien, J. L.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320(5876), 646–649 (2008).
[CrossRef] [PubMed]

J. L. O’Brien, “Optical quantum computing,” Science318(5856), 1567–1570 (2007).
[CrossRef] [PubMed]

Oesterle, U.

S. Olivier, C. Smith, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design,” IEEE J. Quantum Electron.38(7), 816–824 (2002).
[CrossRef]

Olitzky, J. D.

U. K. Khankhoje, S.-H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology21(6), 065202 (2010).
[CrossRef] [PubMed]

Olivier, S.

S. Olivier, C. Smith, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design,” IEEE J. Quantum Electron.38(7), 816–824 (2002).
[CrossRef]

Oulton, R.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Pan, J.-W.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
[CrossRef]

Patel, R. B.

M. A. Pooley, D. J. P. Ellis, R. B. Patel, A. J. Bennett, K. H. A. Chan, I. Farrer, D. A. Ritchie, and A. J. Shields, “Controlled-NOT gate operating with single photons,” Appl. Phys. Lett.100(21), 211103 (2012).
[CrossRef]

Pattantyus-Abraham, A. G.

M. G. Banaee, A. G. Pattantyus-Abraham, M. V. McCutcheon, G. W. Rieger, and J. F. Young, “Efficient coupling of photonic crystal microcavity modes to a ridge waveguide,” Appl. Phys. Lett.90(19), 193106 (2007).
[CrossRef]

Pepper, M.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science295(5552), 102–105 (2002).
[CrossRef] [PubMed]

Petroff, P. M.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics1(12), 704–708 (2007).
[CrossRef]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. L. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoğlu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett.85(16), 3423–3425 (2004).
[CrossRef]

Politi, A.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Pooley, M. A.

M. A. Pooley, D. J. P. Ellis, R. B. Patel, A. J. Bennett, K. H. A. Chan, I. Farrer, D. A. Ritchie, and A. J. Shields, “Controlled-NOT gate operating with single photons,” Appl. Phys. Lett.100(21), 211103 (2012).
[CrossRef]

Rakher, M. T.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics1(12), 704–708 (2007).
[CrossRef]

Ramunno, L.

L. Ramunno and S. Hughes, “Disorder-induced resonance shifts in high-index-contrast photonic crystal cavities,” Phys. Rev. B79(16), 161303 (2009).
[CrossRef]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Reitzenstein, S.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3(12), 724–728 (2009).
[CrossRef]

Richards, B. C.

U. K. Khankhoje, S.-H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology21(6), 065202 (2010).
[CrossRef] [PubMed]

Rieger, G. W.

M. G. Banaee, A. G. Pattantyus-Abraham, M. V. McCutcheon, G. W. Rieger, and J. F. Young, “Efficient coupling of photonic crystal microcavity modes to a ridge waveguide,” Appl. Phys. Lett.90(19), 193106 (2007).
[CrossRef]

Ritchie, D. A.

M. A. Pooley, D. J. P. Ellis, R. B. Patel, A. J. Bennett, K. H. A. Chan, I. Farrer, D. A. Ritchie, and A. J. Shields, “Controlled-NOT gate operating with single photons,” Appl. Phys. Lett.100(21), 211103 (2012).
[CrossRef]

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett.99(26), 261108 (2011).
[CrossRef]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science295(5552), 102–105 (2002).
[CrossRef] [PubMed]

Rudra, A.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106(22), 227402 (2011).
[CrossRef] [PubMed]

Sahin, M.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Sanvitto, D.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Sauvan, C.

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev.2(6), 514–526 (2008).
[CrossRef]

Savona, V.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106(22), 227402 (2011).
[CrossRef] [PubMed]

Scherer, A.

U. K. Khankhoje, S.-H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology21(6), 065202 (2010).
[CrossRef] [PubMed]

Schwagmann, A.

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett.99(26), 261108 (2011).
[CrossRef]

Shields, A. J.

M. A. Pooley, D. J. P. Ellis, R. B. Patel, A. J. Bennett, K. H. A. Chan, I. Farrer, D. A. Ritchie, and A. J. Shields, “Controlled-NOT gate operating with single photons,” Appl. Phys. Lett.100(21), 211103 (2012).
[CrossRef]

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett.99(26), 261108 (2011).
[CrossRef]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1(4), 215–223 (2007).
[CrossRef]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science295(5552), 102–105 (2002).
[CrossRef] [PubMed]

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Skolnick, M. S.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Smith, C.

S. Olivier, C. Smith, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design,” IEEE J. Quantum Electron.38(7), 816–824 (2002).
[CrossRef]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

Solomon, G. S.

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Sorba, L.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106(22), 227402 (2011).
[CrossRef] [PubMed]

Sridharan, D.

Stevenson, R. M.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science295(5552), 102–105 (2002).
[CrossRef] [PubMed]

Stock, E.

W. Fan, Z. Hao, E. Stock, J. Kang, Y. Luo, and D. Bimberg, “Comparison between two types of photonic-crystal cavities for single-photon emitters,” Semicond. Sci. Technol.26(1), 014014 (2011).
[CrossRef]

Stoltz, N. G.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics1(12), 704–708 (2007).
[CrossRef]

Strauf, S.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics1(12), 704–708 (2007).
[CrossRef]

Sweet, J.

U. K. Khankhoje, S.-H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology21(6), 065202 (2010).
[CrossRef] [PubMed]

Szymanski, D.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Tarel, G.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106(22), 227402 (2011).
[CrossRef] [PubMed]

Tran, Q. V.

Ulhaq, A.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3(12), 724–728 (2009).
[CrossRef]

Ulrich, S. M.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3(12), 724–728 (2009).
[CrossRef]

Urayama, J.

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoğlu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett.85(16), 3423–3425 (2004).
[CrossRef]

Villeneuve, P.

J. D. Joannopoulos, P. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature386(6621), 143–149 (1997).
[CrossRef]

Vuckovic, J.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett.90(7), 073102 (2007).
[CrossRef]

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express15(9), 5550–5558 (2007).
[CrossRef] [PubMed]

E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express13(13), 5064–5073 (2005).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

J. Vučković and Y. Yamamoto, “Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett.82(15), 2374–2376 (2003).
[CrossRef]

Waks, E.

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express19(6), 5398–5409 (2011).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett.90(7), 073102 (2007).
[CrossRef]

E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express13(13), 5064–5073 (2005).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

Wang, C. F.

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoğlu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett.85(16), 3423–3425 (2004).
[CrossRef]

Weinfurter, H.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
[CrossRef]

Weisbuch, C.

S. Olivier, C. Smith, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design,” IEEE J. Quantum Electron.38(7), 816–824 (2002).
[CrossRef]

Wendt, J. R.

Whittaker, D. M.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

Wilson-Rae, I.

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoğlu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett.85(16), 3423–3425 (2004).
[CrossRef]

Yamamoto, Y.

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express15(9), 5550–5558 (2007).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

J. Vučković and Y. Yamamoto, “Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett.82(15), 2374–2376 (2003).
[CrossRef]

Young, J. F.

M. G. Banaee, A. G. Pattantyus-Abraham, M. V. McCutcheon, G. W. Rieger, and J. F. Young, “Efficient coupling of photonic crystal microcavity modes to a ridge waveguide,” Appl. Phys. Lett.90(19), 193106 (2007).
[CrossRef]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Yuan, Z.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science295(5552), 102–105 (2002).
[CrossRef] [PubMed]

Zeilinger, A.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
[CrossRef]

Zhang, B.

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express15(9), 5550–5558 (2007).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

Zinoni, C.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett.91(12), 123115 (2007).
[CrossRef]

Appl. Phys. Lett.

M. A. Pooley, D. J. P. Ellis, R. B. Patel, A. J. Bennett, K. H. A. Chan, I. Farrer, D. A. Ritchie, and A. J. Shields, “Controlled-NOT gate operating with single photons,” Appl. Phys. Lett.100(21), 211103 (2012).
[CrossRef]

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett.91(12), 123115 (2007).
[CrossRef]

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett.99(26), 261108 (2011).
[CrossRef]

M. G. Banaee, A. G. Pattantyus-Abraham, M. V. McCutcheon, G. W. Rieger, and J. F. Young, “Efficient coupling of photonic crystal microcavity modes to a ridge waveguide,” Appl. Phys. Lett.90(19), 193106 (2007).
[CrossRef]

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90(24), 241117 (2007).
[CrossRef]

J. Vučković and Y. Yamamoto, “Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett.82(15), 2374–2376 (2003).
[CrossRef]

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoğlu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett.85(16), 3423–3425 (2004).
[CrossRef]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett.90(7), 073102 (2007).
[CrossRef]

IEEE J. Quantum Electron.

S. Olivier, C. Smith, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Cascaded photonic crystal guides and cavities: spectral studies and their impact on integrated optics design,” IEEE J. Quantum Electron.38(7), 816–824 (2002).
[CrossRef]

Laser Photon. Rev.

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photon. Rev.2(6), 514–526 (2008).
[CrossRef]

Nanotechnology

U. K. Khankhoje, S.-H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology21(6), 065202 (2010).
[CrossRef] [PubMed]

Nat. Photonics

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3(12), 724–728 (2009).
[CrossRef]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1(4), 215–223 (2007).
[CrossRef]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics1(12), 704–708 (2007).
[CrossRef]

Nature

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001).
[CrossRef] [PubMed]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997).
[CrossRef]

J. D. Joannopoulos, P. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature386(6621), 143–149 (1997).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

L. Ramunno and S. Hughes, “Disorder-induced resonance shifts in high-index-contrast photonic crystal cavities,” Phys. Rev. B79(16), 161303 (2009).
[CrossRef]

Phys. Rev. Lett.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106(22), 227402 (2011).
[CrossRef] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

Science

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. L. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, “Electrically driven single-photon source,” Science295(5552), 102–105 (2002).
[CrossRef] [PubMed]

J. L. O’Brien, “Optical quantum computing,” Science318(5856), 1567–1570 (2007).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

W. Fan, Z. Hao, E. Stock, J. Kang, Y. Luo, and D. Bimberg, “Comparison between two types of photonic-crystal cavities for single-photon emitters,” Semicond. Sci. Technol.26(1), 014014 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Simulated mode structure of a L3 cavity with r/a = 0.312 and d/a = 0.851. (b) An L3 cavity with the parameters from subfigure (a). The scale bar corresponds to 0.5 μm. Shifts of the neighboring holes have been introduced to optimize the cavity Q-factor, as described later in the text. (c) Experimental study of the complete mode structure of the L3 cavity. The lower panel compares experimental and simulated spectral positions of the different modes within the photonic band gap. The upper panel shows the corresponding experimentally observed Q-factors.

Fig. 2
Fig. 2

(a) Illustration of the device parameters. Profiles for the Ey field components for modes (b) M0, (c) M1, (d) M2, (e) M3 and (f) M4. The color scales are normalised values.

Fig. 3
Fig. 3

(a) Band diagram for a W1 waveguide (left panel) and mode spectrum of an L3 defect cavity (right panel) The dotted red lines are a guide for the eye. (b) Mode profiles of the Ey field component for the waveguide at a cross-section of the slab (far left panel) and along the slab plane (center left panel). The same for an L3 cavity (far left and center left panels, respectively). The color scales are normalized values.

Fig. 4
Fig. 4

(a) Coupled Q-factor of the M0 mode of the L3 cavity (right axis) and corresponding coupling strength (left axis) as a function of the cavity –waveguide separation. (b), Experimental Q-factors of the fundamental mode of waveguide – coupled L3 cavities observed in-plane for cavity – waveguide separations of two and three holes. (c) Mode profiles of the Ey field component. The central panel shows a top view of the device at the centre of the slab, and the remaining panels show cross-sectional views in between nearest neighbor holes of the waveguide (far left), through nearest neighbor holes of the waveguide (left), through the field maximum in the L3 cavity (right), and along the axis of the cavity and waveguide (bottom). The photonic crystal slab is characterized by r/a = 0.329 and d/a = 0.885, values of the single-photon device from section 4. The color scales are normalized values.

Fig. 5
Fig. 5

(a) Experimental Q-factors and spectral position of the M0 mode of waveguide – coupled L3 cavities as observed in in-plane experiments. (b) Record Q-factor of the fundamental mode of 5150 for the device with a lattice constant of 231 nm (marked with yellow circles in a).

Fig. 6
Fig. 6

(a) Device concept for a waveguide – coupled L3 cavity for in-plane single photon emission. The quantum dot (yellow) is coupled to a low-volume, high-Q mode in a L3 defect cavity (inset). Single photons (shown as wavepackets) leak from the cavity into a photonic crystal waveguide, allowing for in-plane emission. The quantum dot is optically excited with a focused laser beam (red cone). (b) Oblique view of a device similar to the one discussed in this section. The scale bar corresponds to 1 μm. (c), In-plane emission spectrum of the L3 – waveguide device at T = 5K. with Pex = 0.34 μW The transition of interest is marked with an arrow at 894.2 nm.

Fig. 7
Fig. 7

(a) Evolution of the QD – cavity mode coupling at different temperatures. While the transition is approximately in resonance for the temperature range from 5 K to 30 K, it tunes out of resonance at higher temperatures (QD transition marked with an arrow). (b) Time-resolved photoluminescence measurements at T = 30 K, 34 K, and 37 K reveal exciton lifetimes of 1.4 ns, 1.7 ns and 2.4 ns, respectively. The thick lines are exponential fits. Inset: Second-order correlation function at T = 5K.

Tables (1)

Tables Icon

Table 1 Comparison of the simulated Q-factors (Qsim) for the ideal structure, the mean of the experimentally observed Q-factors (Qexp), with statistical standard deviation), and simulated mode volumes (Vm) in cubic wavelengths. The structural parameters for the simulation were r/a = 0.312 and d/a = 0.851.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 Q cpl = 1 Q cav +Γ

Metrics