Abstract

We experimentally demonstrate an on-chip compact and simple to fabricate silicon Schottky photodetector for telecom wavelengths operating on the basis of internal photoemission process. The device is realized using CMOS compatible approach of local-oxidation of silicon, which enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. The photodetector demonstrates enhanced internal responsivity of 12.5mA/W for operation wavelength of 1.55µm corresponding to an internal quantum efficiency of 1%, about two orders of magnitude higher than our previously demonstrated results [22]. We attribute this improved detection efficiency to the presence of surface roughness at the boundary between the materials forming the Schottky contact. The combination of enhanced quantum efficiency together with a simple fabrication process provides a promising platform for the realization of all silicon photodetectors and their integration with other nanophotonic and nanoplasmonic structures towards the construction of monolithic silicon opto-electronic circuitry on-chip.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
    [CrossRef]
  2. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
    [CrossRef]
  3. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
    [CrossRef] [PubMed]
  4. A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett.70(3), 303–305 (1997).
    [CrossRef]
  5. Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-si avalanche photodiodes with low-noise performances,” IEEE Photon. Technol. Lett.14(11), 1593–1595 (2002).
    [CrossRef]
  6. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
    [CrossRef]
  7. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).
  8. J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett.86(24), 241103 (2005).
  9. J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonics5(1), 059507 (2011).
  10. K. Preston, Y. H. Lee, M. Zhang, and M. Lipson, “Waveguide-integrated telecom-wavelength photodiode in deposited silicon,” Opt. Lett.36(1), 52–54 (2011).
    [CrossRef] [PubMed]
  11. H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 µm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett.95(17), 171111 (2009).
  12. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599 (2012).
  13. D. W. Peters, “An infrared detector utilizing internal photoemission,” Proc. IEEE55(5), 704–705 (1967).
    [CrossRef]
  14. S. M. Sze and K. Ng, Kwok, “Physics of Semiconductor Devices,“ Wiley, New York (2006).
  15. S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
  16. M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
  17. J. E. Sipe and J. Becher, “Surface-plasmon-assisted photoemission,” J. Opt. Soc. Am.71(10), 1286–1288 (1981).
    [CrossRef]
  18. J. G. Endriz, “Surface waves and grating-tuned photocathodes,” Appl. Phys. Lett.25(5), 261–262 (1974).
  19. Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag-Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett.95(24), 241106 (2009).
  20. A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett.95(2), 021104 (2009).
  21. A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide schottky detector,” Opt. Express18(8), 8505–8514 (2010).
    [CrossRef] [PubMed]
  22. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
    [CrossRef] [PubMed]
  23. T. Aihara, K. Nakagawa, M. Fukuhara, Y. L. Yu, K. Yamaguchi, and M. Fukuda, “Optical frequency signal detection through surface plasmon polaritons,” Appl. Phys. Lett.99(4), 043111 (2011).
  24. M. Fukuda, T. Aihara, K. Yamaguchi, Y. Y. Ling, K. Miyaji, and M. Tohyama, “Light detection enhanced by surface plasmon resonance in metal film,” Appl. Phys. Lett.96(15), 153107 (2010).
  25. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
    [CrossRef] [PubMed]
  26. S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).
  27. B. Desiatov, I. Goykhman, and U. Levy, “Demonstration of submicron square-like silicon waveguide using optimized LOCOS process,” Opt. Express18, 18592–18597 (2010).
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  29. H. Norde, “A modified forward I-V plot for schottky diodes with high series resistance,” J. Appl. Phys.50(7), 5052–5053 (1979).
    [CrossRef]
  30. S. K. Cheung and N. W. Cheung, “Extraction of schottky diode parameters from forward current-voltage characteristics,” Appl. Phys. Lett.49(2), 85–87 (1986).
    [CrossRef]
  31. K. Sato and Y. Yasumura, “Study of forward I-V plot for schottky diodes with high series resistance,” J. Appl. Phys.58(9), 3655–3657 (1985).
    [CrossRef]
  32. H. C. Card, “Aluminum-Silicon schottky barriers and ohmic contacts in integrated circuits,” IEEE Trans. Electron. Dev.23(6), 538–544 (1976).
    [CrossRef]
  33. Z. Horváth, M. Ádám, I. Szabó, M. Serényi, and V. Van Tuyen, “Modification of Al/Si interface and schottky barrier height with chemical treatment,” Appl. Surf. Sci.190(1-4), 441–444 (2002).
    [CrossRef]
  34. V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, “Light-induced kinetic effects in solids,” Phys. Rev. B53(17), 11388–11402 (1996).
  35. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett.63(16), 2174–2176 (1993).
    [CrossRef]
  36. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
    [CrossRef]
  37. R. H. Horng, S. H. Huang, C. C. Yang, and D. S. Wuu, “Efficiency Improvement of GaN-Based LEDs with ITO Texturing Window Layers Using Natural Lithography,” IEEE J. Sel. Top. Quantum Electron.12(6), 1196–1201 (2006).
    [CrossRef]

2012 (2)

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599 (2012).

2011 (5)

K. Preston, Y. H. Lee, M. Zhang, and M. Lipson, “Waveguide-integrated telecom-wavelength photodiode in deposited silicon,” Opt. Lett.36(1), 52–54 (2011).
[CrossRef] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

T. Aihara, K. Nakagawa, M. Fukuhara, Y. L. Yu, K. Yamaguchi, and M. Fukuda, “Optical frequency signal detection through surface plasmon polaritons,” Appl. Phys. Lett.99(4), 043111 (2011).

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonics5(1), 059507 (2011).

2010 (7)

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
[CrossRef] [PubMed]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).

M. Fukuda, T. Aihara, K. Yamaguchi, Y. Y. Ling, K. Miyaji, and M. Tohyama, “Light detection enhanced by surface plasmon resonance in metal film,” Appl. Phys. Lett.96(15), 153107 (2010).

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide schottky detector,” Opt. Express18(8), 8505–8514 (2010).
[CrossRef] [PubMed]

B. Desiatov, I. Goykhman, and U. Levy, “Demonstration of submicron square-like silicon waveguide using optimized LOCOS process,” Opt. Express18, 18592–18597 (2010).

2009 (4)

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 µm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett.95(17), 171111 (2009).

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag-Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett.95(24), 241106 (2009).

A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett.95(2), 021104 (2009).

2008 (1)

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).

2006 (1)

R. H. Horng, S. H. Huang, C. C. Yang, and D. S. Wuu, “Efficiency Improvement of GaN-Based LEDs with ITO Texturing Window Layers Using Natural Lithography,” IEEE J. Sel. Top. Quantum Electron.12(6), 1196–1201 (2006).
[CrossRef]

2005 (1)

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett.86(24), 241103 (2005).

2004 (1)

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

2002 (3)

Z. Horváth, M. Ádám, I. Szabó, M. Serényi, and V. Van Tuyen, “Modification of Al/Si interface and schottky barrier height with chemical treatment,” Appl. Surf. Sci.190(1-4), 441–444 (2002).
[CrossRef]

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-si avalanche photodiodes with low-noise performances,” IEEE Photon. Technol. Lett.14(11), 1593–1595 (2002).
[CrossRef]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

1997 (1)

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett.70(3), 303–305 (1997).
[CrossRef]

1996 (1)

V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, “Light-induced kinetic effects in solids,” Phys. Rev. B53(17), 11388–11402 (1996).

1993 (1)

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett.63(16), 2174–2176 (1993).
[CrossRef]

1986 (1)

S. K. Cheung and N. W. Cheung, “Extraction of schottky diode parameters from forward current-voltage characteristics,” Appl. Phys. Lett.49(2), 85–87 (1986).
[CrossRef]

1985 (1)

K. Sato and Y. Yasumura, “Study of forward I-V plot for schottky diodes with high series resistance,” J. Appl. Phys.58(9), 3655–3657 (1985).
[CrossRef]

1981 (1)

1979 (1)

H. Norde, “A modified forward I-V plot for schottky diodes with high series resistance,” J. Appl. Phys.50(7), 5052–5053 (1979).
[CrossRef]

1976 (1)

H. C. Card, “Aluminum-Silicon schottky barriers and ohmic contacts in integrated circuits,” IEEE Trans. Electron. Dev.23(6), 538–544 (1976).
[CrossRef]

1974 (1)

J. G. Endriz, “Surface waves and grating-tuned photocathodes,” Appl. Phys. Lett.25(5), 261–262 (1974).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1967 (1)

D. W. Peters, “An infrared detector utilizing internal photoemission,” Proc. IEEE55(5), 704–705 (1967).
[CrossRef]

Abraham, P.

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett.70(3), 303–305 (1997).
[CrossRef]

Ackert, J. J.

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonics5(1), 059507 (2011).

Ádám, M.

Z. Horváth, M. Ádám, I. Szabó, M. Serényi, and V. Van Tuyen, “Modification of Al/Si interface and schottky barrier height with chemical treatment,” Appl. Surf. Sci.190(1-4), 441–444 (2002).
[CrossRef]

Aihara, T.

T. Aihara, K. Nakagawa, M. Fukuhara, Y. L. Yu, K. Yamaguchi, and M. Fukuda, “Optical frequency signal detection through surface plasmon polaritons,” Appl. Phys. Lett.99(4), 043111 (2011).

M. Fukuda, T. Aihara, K. Yamaguchi, Y. Y. Ling, K. Miyaji, and M. Tohyama, “Light detection enhanced by surface plasmon resonance in metal film,” Appl. Phys. Lett.96(15), 153107 (2010).

Akbari, A.

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide schottky detector,” Opt. Express18(8), 8505–8514 (2010).
[CrossRef] [PubMed]

A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett.95(2), 021104 (2009).

Asghari, M.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

Assefa, S.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Bai, P.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).

Beausoleil, R. G.

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonics5(1), 059507 (2011).

Becher, J.

Beling, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Berini, P.

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide schottky detector,” Opt. Express18(8), 8505–8514 (2010).
[CrossRef] [PubMed]

A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett.95(2), 021104 (2009).

Bitter, M.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-si avalanche photodiodes with low-noise performances,” IEEE Photon. Technol. Lett.14(11), 1593–1595 (2002).
[CrossRef]

Bowers, J. E.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett.70(3), 303–305 (1997).
[CrossRef]

Bradley, J. D. B.

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett.86(24), 241103 (2005).

Campbell, J. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Caneau, C.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett.63(16), 2174–2176 (1993).
[CrossRef]

Card, H. C.

H. C. Card, “Aluminum-Silicon schottky barriers and ohmic contacts in integrated circuits,” IEEE Trans. Electron. Dev.23(6), 538–544 (1976).
[CrossRef]

Casalino, M.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599 (2012).

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).

Chen, H.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 µm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett.95(17), 171111 (2009).

Chen, H.-W.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Chen, S.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag-Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett.95(24), 241106 (2009).

Cheung, N. W.

S. K. Cheung and N. W. Cheung, “Extraction of schottky diode parameters from forward current-voltage characteristics,” Appl. Phys. Lett.49(2), 85–87 (1986).
[CrossRef]

Cheung, S. K.

S. K. Cheung and N. W. Cheung, “Extraction of schottky diode parameters from forward current-voltage characteristics,” Appl. Phys. Lett.49(2), 85–87 (1986).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Chu, H. S.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).

Clawson, A. R.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-si avalanche photodiodes with low-noise performances,” IEEE Photon. Technol. Lett.14(11), 1593–1595 (2002).
[CrossRef]

Coppola, G.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599 (2012).

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).

Day, I. E.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

DenBaars, S. P.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

Desiatov, B.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

B. Desiatov, I. Goykhman, and U. Levy, “Demonstration of submicron square-like silicon waveguide using optimized LOCOS process,” Opt. Express18, 18592–18597 (2010).

Douketis, C.

V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, “Light-induced kinetic effects in solids,” Phys. Rev. B53(17), 11388–11402 (1996).

Drake, J.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

Endriz, J. G.

J. G. Endriz, “Surface waves and grating-tuned photocathodes,” Appl. Phys. Lett.25(5), 261–262 (1974).

Fiorentino, M.

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonics5(1), 059507 (2011).

Fujii, T.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

Fukuda, M.

T. Aihara, K. Nakagawa, M. Fukuhara, Y. L. Yu, K. Yamaguchi, and M. Fukuda, “Optical frequency signal detection through surface plasmon polaritons,” Appl. Phys. Lett.99(4), 043111 (2011).

M. Fukuda, T. Aihara, K. Yamaguchi, Y. Y. Ling, K. Miyaji, and M. Tohyama, “Light detection enhanced by surface plasmon resonance in metal film,” Appl. Phys. Lett.96(15), 153107 (2010).

Fukuhara, M.

T. Aihara, K. Nakagawa, M. Fukuhara, Y. L. Yu, K. Yamaguchi, and M. Fukuda, “Optical frequency signal detection through surface plasmon polaritons,” Appl. Phys. Lett.99(4), 043111 (2011).

Gao, Y.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

Gioffrè, M.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).

Gmitter, T. J.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett.63(16), 2174–2176 (1993).
[CrossRef]

Goykhman, I.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

B. Desiatov, I. Goykhman, and U. Levy, “Demonstration of submicron square-like silicon waveguide using optimized LOCOS process,” Opt. Express18, 18592–18597 (2010).

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Hawkins, A. R.

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett.70(3), 303–305 (1997).
[CrossRef]

Horng, R. H.

R. H. Horng, S. H. Huang, C. C. Yang, and D. S. Wuu, “Efficiency Improvement of GaN-Based LEDs with ITO Texturing Window Layers Using Natural Lithography,” IEEE J. Sel. Top. Quantum Electron.12(6), 1196–1201 (2006).
[CrossRef]

Horváth, Z.

Z. Horváth, M. Ádám, I. Szabó, M. Serényi, and V. Van Tuyen, “Modification of Al/Si interface and schottky barrier height with chemical treatment,” Appl. Surf. Sci.190(1-4), 441–444 (2002).
[CrossRef]

Hu, E. L.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

Huang, S. H.

R. H. Horng, S. H. Huang, C. C. Yang, and D. S. Wuu, “Efficiency Improvement of GaN-Based LEDs with ITO Texturing Window Layers Using Natural Lithography,” IEEE J. Sel. Top. Quantum Electron.12(6), 1196–1201 (2006).
[CrossRef]

Huang, W.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag-Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett.95(24), 241106 (2009).

Hummel, S.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-si avalanche photodiodes with low-noise performances,” IEEE Photon. Technol. Lett.14(11), 1593–1595 (2002).
[CrossRef]

Iodice, M.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599 (2012).

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).

Jessop, P. E.

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonics5(1), 059507 (2011).

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett.86(24), 241103 (2005).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kang, Y.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-si avalanche photodiodes with low-noise performances,” IEEE Photon. Technol. Lett.14(11), 1593–1595 (2002).
[CrossRef]

Khurgin, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Knights, A. P.

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonics5(1), 059507 (2011).

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett.86(24), 241103 (2005).

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

Kuo, Y.-H.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Kwong, D. L.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).

Lee, Y. H.

Levy, U.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

B. Desiatov, I. Goykhman, and U. Levy, “Demonstration of submicron square-like silicon waveguide using optimized LOCOS process,” Opt. Express18, 18592–18597 (2010).

Liang, T. K.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

Ling, Y. Y.

M. Fukuda, T. Aihara, K. Yamaguchi, Y. Y. Ling, K. Miyaji, and M. Tohyama, “Light detection enhanced by surface plasmon resonance in metal film,” Appl. Phys. Lett.96(15), 153107 (2010).

Lipson, M.

Litski, S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Liu, H.-D.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

Lo, G. Q.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).

Lo, Y. H.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-si avalanche photodiodes with low-noise performances,” IEEE Photon. Technol. Lett.14(11), 1593–1595 (2002).
[CrossRef]

Logan, D. F.

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonics5(1), 059507 (2011).

Luo, X.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 µm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett.95(17), 171111 (2009).

Mages, P.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-si avalanche photodiodes with low-noise performances,” IEEE Photon. Technol. Lett.14(11), 1593–1595 (2002).
[CrossRef]

McIntosh, D. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

Miyaji, K.

M. Fukuda, T. Aihara, K. Yamaguchi, Y. Y. Ling, K. Miyaji, and M. Tohyama, “Light detection enhanced by surface plasmon resonance in metal film,” Appl. Phys. Lett.96(15), 153107 (2010).

Morse, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Moskovits, M.

V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, “Light-induced kinetic effects in solids,” Phys. Rev. B53(17), 11388–11402 (1996).

Nakagawa, K.

T. Aihara, K. Nakagawa, M. Fukuhara, Y. L. Yu, K. Yamaguchi, and M. Fukuda, “Optical frequency signal detection through surface plasmon polaritons,” Appl. Phys. Lett.99(4), 043111 (2011).

Nakamura, S.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

Norde, H.

H. Norde, “A modified forward I-V plot for schottky diodes with high series resistance,” J. Appl. Phys.50(7), 5052–5053 (1979).
[CrossRef]

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Notomi, M.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).

Pan, Z.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-si avalanche photodiodes with low-noise performances,” IEEE Photon. Technol. Lett.14(11), 1593–1595 (2002).
[CrossRef]

Paniccia, M. J.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Pauchard, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-si avalanche photodiodes with low-noise performances,” IEEE Photon. Technol. Lett.14(11), 1593–1595 (2002).
[CrossRef]

Peters, D. W.

D. W. Peters, “An infrared detector utilizing internal photoemission,” Proc. IEEE55(5), 704–705 (1967).
[CrossRef]

Poon, A. W.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 µm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett.95(17), 171111 (2009).

Preston, K.

Rendina, I.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599 (2012).

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).

Saffioti, N.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).

Sarid, G.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Sato, K.

K. Sato and Y. Yasumura, “Study of forward I-V plot for schottky diodes with high series resistance,” J. Appl. Phys.58(9), 3655–3657 (1985).
[CrossRef]

Scherer, A.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett.63(16), 2174–2176 (1993).
[CrossRef]

Schnitzer, I.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett.63(16), 2174–2176 (1993).
[CrossRef]

Serényi, M.

Z. Horváth, M. Ádám, I. Szabó, M. Serényi, and V. Van Tuyen, “Modification of Al/Si interface and schottky barrier height with chemical treatment,” Appl. Surf. Sci.190(1-4), 441–444 (2002).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, “Light-induced kinetic effects in solids,” Phys. Rev. B53(17), 11388–11402 (1996).

Shappir, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Sharma, R.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

Shinya, A.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).

Sipe, J. E.

Sirleto, L.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599 (2012).

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Streubel, K.

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett.70(3), 303–305 (1997).
[CrossRef]

Stuckless, J. T.

V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, “Light-induced kinetic effects in solids,” Phys. Rev. B53(17), 11388–11402 (1996).

Su, X.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag-Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett.95(24), 241106 (2009).

Sumikura, H.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).

Szabó, I.

Z. Horváth, M. Ádám, I. Szabó, M. Serényi, and V. Van Tuyen, “Modification of Al/Si interface and schottky barrier height with chemical treatment,” Appl. Surf. Sci.190(1-4), 441–444 (2002).
[CrossRef]

Tait, R. N.

Tanabe, T.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).

Taniyama, H.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).

Tohyama, M.

M. Fukuda, T. Aihara, K. Yamaguchi, Y. Y. Ling, K. Miyaji, and M. Tohyama, “Light detection enhanced by surface plasmon resonance in metal film,” Appl. Phys. Lett.96(15), 153107 (2010).

Tsang, H. K.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

Van Tuyen, V.

Z. Horváth, M. Ádám, I. Szabó, M. Serényi, and V. Van Tuyen, “Modification of Al/Si interface and schottky barrier height with chemical treatment,” Appl. Surf. Sci.190(1-4), 441–444 (2002).
[CrossRef]

Vlasov, Y. A.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Wang, Q.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag-Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett.95(24), 241106 (2009).

Wang, Y.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag-Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett.95(24), 241106 (2009).

Wu, S.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag-Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett.95(24), 241106 (2009).

Wu, W.

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett.70(3), 303–305 (1997).
[CrossRef]

Wuu, D. S.

R. H. Horng, S. H. Huang, C. C. Yang, and D. S. Wuu, “Efficiency Improvement of GaN-Based LEDs with ITO Texturing Window Layers Using Natural Lithography,” IEEE J. Sel. Top. Quantum Electron.12(6), 1196–1201 (2006).
[CrossRef]

Xia, F.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Yablonovitch, E.

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett.63(16), 2174–2176 (1993).
[CrossRef]

Yamaguchi, K.

T. Aihara, K. Nakagawa, M. Fukuhara, Y. L. Yu, K. Yamaguchi, and M. Fukuda, “Optical frequency signal detection through surface plasmon polaritons,” Appl. Phys. Lett.99(4), 043111 (2011).

M. Fukuda, T. Aihara, K. Yamaguchi, Y. Y. Ling, K. Miyaji, and M. Tohyama, “Light detection enhanced by surface plasmon resonance in metal film,” Appl. Phys. Lett.96(15), 153107 (2010).

Yang, C. C.

R. H. Horng, S. H. Huang, C. C. Yang, and D. S. Wuu, “Efficiency Improvement of GaN-Based LEDs with ITO Texturing Window Layers Using Natural Lithography,” IEEE J. Sel. Top. Quantum Electron.12(6), 1196–1201 (2006).
[CrossRef]

Yasumura, Y.

K. Sato and Y. Yasumura, “Study of forward I-V plot for schottky diodes with high series resistance,” J. Appl. Phys.58(9), 3655–3657 (1985).
[CrossRef]

Yu, M. B.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).

Yu, P. K. L.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-si avalanche photodiodes with low-noise performances,” IEEE Photon. Technol. Lett.14(11), 1593–1595 (2002).
[CrossRef]

Yu, Y. L.

T. Aihara, K. Nakagawa, M. Fukuhara, Y. L. Yu, K. Yamaguchi, and M. Fukuda, “Optical frequency signal detection through surface plasmon polaritons,” Appl. Phys. Lett.99(4), 043111 (2011).

Zadka, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Zaoui, W. S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Zhang, M.

Zhao, J.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag-Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett.95(24), 241106 (2009).

Zheng, X.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

Zhu, D.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag-Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett.95(24), 241106 (2009).

Zhu, S.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).

Zhu, Y.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag-Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett.95(24), 241106 (2009).

Appl. Phys. Lett. (16)

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett.70(3), 303–305 (1997).
[CrossRef]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett.81(7), 1323–1325 (2002).
[CrossRef]

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett.96, 101103 (2010).

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett.86(24), 241103 (2005).

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).

J. G. Endriz, “Surface waves and grating-tuned photocathodes,” Appl. Phys. Lett.25(5), 261–262 (1974).

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag-Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett.95(24), 241106 (2009).

A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett.95(2), 021104 (2009).

S. K. Cheung and N. W. Cheung, “Extraction of schottky diode parameters from forward current-voltage characteristics,” Appl. Phys. Lett.49(2), 85–87 (1986).
[CrossRef]

I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett.63(16), 2174–2176 (1993).
[CrossRef]

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

T. Aihara, K. Nakagawa, M. Fukuhara, Y. L. Yu, K. Yamaguchi, and M. Fukuda, “Optical frequency signal detection through surface plasmon polaritons,” Appl. Phys. Lett.99(4), 043111 (2011).

M. Fukuda, T. Aihara, K. Yamaguchi, Y. Y. Ling, K. Miyaji, and M. Tohyama, “Light detection enhanced by surface plasmon resonance in metal film,” Appl. Phys. Lett.96(15), 153107 (2010).

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 µm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett.95(17), 171111 (2009).

Appl. Surf. Sci. (1)

Z. Horváth, M. Ádám, I. Szabó, M. Serényi, and V. Van Tuyen, “Modification of Al/Si interface and schottky barrier height with chemical treatment,” Appl. Surf. Sci.190(1-4), 441–444 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. H. Horng, S. H. Huang, C. C. Yang, and D. S. Wuu, “Efficiency Improvement of GaN-Based LEDs with ITO Texturing Window Layers Using Natural Lithography,” IEEE J. Sel. Top. Quantum Electron.12(6), 1196–1201 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-si avalanche photodiodes with low-noise performances,” IEEE Photon. Technol. Lett.14(11), 1593–1595 (2002).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

H. C. Card, “Aluminum-Silicon schottky barriers and ohmic contacts in integrated circuits,” IEEE Trans. Electron. Dev.23(6), 538–544 (1976).
[CrossRef]

J. Appl. Phys. (2)

H. Norde, “A modified forward I-V plot for schottky diodes with high series resistance,” J. Appl. Phys.50(7), 5052–5053 (1979).
[CrossRef]

K. Sato and Y. Yasumura, “Study of forward I-V plot for schottky diodes with high series resistance,” J. Appl. Phys.58(9), 3655–3657 (1985).
[CrossRef]

J. Nanophotonics (1)

J. J. Ackert, M. Fiorentino, D. F. Logan, R. G. Beausoleil, P. E. Jessop, and A. P. Knights, “Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth,” J. Nanophotonics5(1), 059507 (2011).

J. Opt. Soc. Am. (1)

Nano Lett. (1)

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon Surface-Plasmon schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics3(1), 59–63 (2009).
[CrossRef]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

Nature (1)

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, “Light-induced kinetic effects in solids,” Phys. Rev. B53(17), 11388–11402 (1996).

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Proc. IEEE (1)

D. W. Peters, “An infrared detector utilizing internal photoemission,” Proc. IEEE55(5), 704–705 (1967).
[CrossRef]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Other (1)

S. M. Sze and K. Ng, Kwok, “Physics of Semiconductor Devices,“ Wiley, New York (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) SEM micrograph of the locally-oxidized silicon bus waveguide integrated with the Schottky photodetector. b) Zoom in on the Schottky contact. The scale bars shown are relevant only for a lateral dimension because of the slanted view of the micrographs. The scale bar for the vertical direction should be corrected by taking into account a tilt angle of 20 degrees.

Fig. 2
Fig. 2

a) Intensity profile of the optical mode resides in the photonic bus waveguide. b) Intensity profile of the plasmonic mode resides in the Schottky contact. c) Vertical cross section of the out of plane electric field distribution at the center of the device along the propagation direction, as calculated by 3D FDTD simulation

Fig. 3
Fig. 3

Near-field characterization of Schottky photodetector. a) Topography image; b) NSOM image; c) 3D representation of the superimposed topography and NSOM images.

Fig. 4
Fig. 4

Temperature dependent electrical characterization of the device

Fig. 5
Fig. 5

Opto-electronic characterization of the integrated Schottky photodetector. a) I-V measurements as a function of the incident optical power at operation wavelength of 1.55μm. b) The responsivity plot of the device at operation wavelength of 1.55μm. The reverse current is taken for a small reverse bias of 0.1V.

Metrics