Abstract

We demonstrate an efficient technique for the second harmonic generation (SHG) of the broadband radiation based on the temperature gradient along a nonlinear crystal. The characteristics of Type I non-critical phase-matched SHG of broadband radiation in the LiB3O5 (LBO) crystal with the temperature gradient imposed along the crystal were investigated both numerically and experimentally. The frequency doubling efficiency of the broadband pulsed fiber laser radiation as high as 68% has been demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Brown, “Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs,” Opt. Lett.23(20), 1591–1593 (1998).
    [CrossRef] [PubMed]
  2. W. J. Alford and A. V. Smith, “Frequency-doubling broadband light in multiple crystals,” J. Opt. Soc. Am. B18(4), 515–523 (2001).
    [CrossRef]
  3. A. V. Smith, D. J. Armstrong, and W. J. Alford, “Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals,” J. Opt. Soc. Am. B15(1), 122–141 (1998).
    [CrossRef]
  4. O. E. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron.25(12), 2464–2468 (1989).
    [CrossRef]
  5. B. A. Richman, S. E. Bisson, R. Trebino, E. Sidick, and A. Jacobson, “Efficient broadband second-harmonic generation by dispersive achromatic nonlinear conversion using only prisms,” Opt. Lett.23(7), 497–499 (1998).
    [CrossRef] [PubMed]
  6. K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation,” IEEE J. Quantum Electron.30(7), 1596–1604 (1994).
    [CrossRef]
  7. Y. L. Lee, Y. C. Noh, C. Jung, T. Yu, D. K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express11(22), 2813–2819 (2003).
    [CrossRef] [PubMed]
  8. A. Tehranchi and R. Kashyap, “Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second harmonic generation,” J. Lightwave Technol.26(3), 343–349 (2008).
    [CrossRef]
  9. A. Tehranchi and R. Kashyap, “Engineered gratings for flat broadening of second-harmonic phase-matching bandwidth in MgO-doped lithium niobate waveguides,” Opt. Express16(23), 18970–18975 (2008).
    [CrossRef] [PubMed]
  10. R. A. Haas, “Influence of a constant temperature gradient on the spectral-bandwidth of second-harmonic generation in nonlinear crystals,” Opt. Commun.113(4-6), 523–529 (1995).
    [CrossRef]
  11. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron.30(12), 2950–2952 (1994).
    [CrossRef]
  12. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005).
  13. X. Liu, L. J. Qian, and F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun.144(4-6), 265–268 (1997).
    [CrossRef]
  14. A. Dubietis, G. Tamosauskas, and A. Varanavicius, “Femtosecond third-harmonic pulse generation by mixing of pulses with different duration,” Opt. Commun.186(1-3), 211–217 (2000).
    [CrossRef]
  15. T. Zhang and M. Yonemura, “Pulse shaping of ultrashort laser pulses with nonlinear optical crystals,” Jpn. J. Appl. Phys.38(Part 1, No. 11), 6351–6358 (1999).
    [CrossRef]
  16. M. Sabaeian, L. Mousave, and H. Nadgaran, “Investigation of thermally-induced phase mismatching in continuous-wave second harmonic generation: a theoretical model,” Opt. Express18(18), 18732–18743 (2010).
    [CrossRef] [PubMed]
  17. S. Richard, “Second-harmonic generation in tapered optical fibers,” J. Opt. Soc. Am. B27(8), 1504–1512 (2010).
    [CrossRef]
  18. S. G. Grechin, V. G. Dmitriev, V. A. D'yakov, and V. I. Pryalkin, “Anomalous temperature-independent birefringence in a biaxial optical LBO crystal,” Quantum Electron.30(4), 285–286 (2000).
    [CrossRef]
  19. A. V. Smith, R. J. Gehr, and M. S. Bowers, “Numerical models of broad-bandwidth nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B16(4), 609–619 (1999).
    [CrossRef]
  20. G. Arisholm, “General numerical methods for simulating second-order nonlinear interactions in birefringent media,” J. Opt. Soc. Am. B14(10), 2543–2549 (1997).
    [CrossRef]
  21. A. V. Smith, “How to select nonlinear crystals and model their performance using SNLO software,” Proc. SPIE3928, 62–69 (2000).
    [CrossRef]
  22. Q. Liu, X. Yan, M. Gong, X. Fu, and D. Wang, “103 W high beam quality green laser with an extra- cavity second harmonic generation,” Opt. Express16(19), 14335–14340 (2008).
    [CrossRef] [PubMed]
  23. K. H. Hong, C. J. Lai, A. Siddiqui, and F. X. Kärtner, “130-W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier,” Opt. Express17(19), 16911–16919 (2009).
    [CrossRef] [PubMed]
  24. R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron.20(10), 1178–1187 (1984).
    [CrossRef]
  25. C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B6(4), 616–621 (1989).
    [CrossRef]
  26. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
    [CrossRef]
  27. S. M. Saltiel, K. Koynov, B. Agate, and W. Sibbett, “Second-harmonic generation with focused beams under conditions of large group-velocity mismatch,” J. Opt. Soc. Am. B21(3), 591–598 (2004).
    [CrossRef]

2010 (2)

2009 (1)

2008 (3)

2004 (1)

2003 (1)

2001 (1)

2000 (3)

A. Dubietis, G. Tamosauskas, and A. Varanavicius, “Femtosecond third-harmonic pulse generation by mixing of pulses with different duration,” Opt. Commun.186(1-3), 211–217 (2000).
[CrossRef]

S. G. Grechin, V. G. Dmitriev, V. A. D'yakov, and V. I. Pryalkin, “Anomalous temperature-independent birefringence in a biaxial optical LBO crystal,” Quantum Electron.30(4), 285–286 (2000).
[CrossRef]

A. V. Smith, “How to select nonlinear crystals and model their performance using SNLO software,” Proc. SPIE3928, 62–69 (2000).
[CrossRef]

1999 (2)

T. Zhang and M. Yonemura, “Pulse shaping of ultrashort laser pulses with nonlinear optical crystals,” Jpn. J. Appl. Phys.38(Part 1, No. 11), 6351–6358 (1999).
[CrossRef]

A. V. Smith, R. J. Gehr, and M. S. Bowers, “Numerical models of broad-bandwidth nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B16(4), 609–619 (1999).
[CrossRef]

1998 (3)

1997 (3)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

X. Liu, L. J. Qian, and F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun.144(4-6), 265–268 (1997).
[CrossRef]

G. Arisholm, “General numerical methods for simulating second-order nonlinear interactions in birefringent media,” J. Opt. Soc. Am. B14(10), 2543–2549 (1997).
[CrossRef]

1995 (1)

R. A. Haas, “Influence of a constant temperature gradient on the spectral-bandwidth of second-harmonic generation in nonlinear crystals,” Opt. Commun.113(4-6), 523–529 (1995).
[CrossRef]

1994 (2)

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron.30(12), 2950–2952 (1994).
[CrossRef]

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation,” IEEE J. Quantum Electron.30(7), 1596–1604 (1994).
[CrossRef]

1989 (2)

O. E. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron.25(12), 2464–2468 (1989).
[CrossRef]

C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B6(4), 616–621 (1989).
[CrossRef]

1984 (1)

R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron.20(10), 1178–1187 (1984).
[CrossRef]

Agate, B.

Alford, W. J.

Arisholm, G.

Armstrong, D. J.

Bisson, S. E.

Bowers, M. S.

Brown, M.

Chen, C.

Dmitriev, V. G.

S. G. Grechin, V. G. Dmitriev, V. A. D'yakov, and V. I. Pryalkin, “Anomalous temperature-independent birefringence in a biaxial optical LBO crystal,” Quantum Electron.30(4), 285–286 (2000).
[CrossRef]

Dubietis, A.

A. Dubietis, G. Tamosauskas, and A. Varanavicius, “Femtosecond third-harmonic pulse generation by mixing of pulses with different duration,” Opt. Commun.186(1-3), 211–217 (2000).
[CrossRef]

D'yakov, V. A.

S. G. Grechin, V. G. Dmitriev, V. A. D'yakov, and V. I. Pryalkin, “Anomalous temperature-independent birefringence in a biaxial optical LBO crystal,” Quantum Electron.30(4), 285–286 (2000).
[CrossRef]

Eckardt, R.

R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron.20(10), 1178–1187 (1984).
[CrossRef]

Fu, X.

Gehr, R. J.

Gong, M.

Grechin, S. G.

S. G. Grechin, V. G. Dmitriev, V. A. D'yakov, and V. I. Pryalkin, “Anomalous temperature-independent birefringence in a biaxial optical LBO crystal,” Quantum Electron.30(4), 285–286 (2000).
[CrossRef]

Haas, R. A.

R. A. Haas, “Influence of a constant temperature gradient on the spectral-bandwidth of second-harmonic generation in nonlinear crystals,” Opt. Commun.113(4-6), 523–529 (1995).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Hong, K. H.

Jacobson, A.

Jiang, A.

Jung, C.

Kärtner, F. X.

Kashyap, R.

Kato, K.

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron.30(12), 2950–2952 (1994).
[CrossRef]

Kato, M.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation,” IEEE J. Quantum Electron.30(7), 1596–1604 (1994).
[CrossRef]

Ko, D. K.

Koynov, K.

Lai, C. J.

Lee, J.

Lee, Y. L.

Li, R.

Lin, S.

Liu, Q.

Liu, X.

X. Liu, L. J. Qian, and F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun.144(4-6), 265–268 (1997).
[CrossRef]

Martinez, O. E.

O. E. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron.25(12), 2464–2468 (1989).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation,” IEEE J. Quantum Electron.30(7), 1596–1604 (1994).
[CrossRef]

Mousave, L.

Nadgaran, H.

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Noh, Y. C.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Pryalkin, V. I.

S. G. Grechin, V. G. Dmitriev, V. A. D'yakov, and V. I. Pryalkin, “Anomalous temperature-independent birefringence in a biaxial optical LBO crystal,” Quantum Electron.30(4), 285–286 (2000).
[CrossRef]

Qian, L. J.

X. Liu, L. J. Qian, and F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun.144(4-6), 265–268 (1997).
[CrossRef]

Reintjes, J.

R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron.20(10), 1178–1187 (1984).
[CrossRef]

Richard, S.

Richman, B. A.

Sabaeian, M.

Saltiel, S. M.

Sato, H.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation,” IEEE J. Quantum Electron.30(7), 1596–1604 (1994).
[CrossRef]

Sibbett, W.

Siddiqui, A.

Sidick, E.

Smith, A. V.

Tamosauskas, G.

A. Dubietis, G. Tamosauskas, and A. Varanavicius, “Femtosecond third-harmonic pulse generation by mixing of pulses with different duration,” Opt. Commun.186(1-3), 211–217 (2000).
[CrossRef]

Tehranchi, A.

Trebino, R.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Varanavicius, A.

A. Dubietis, G. Tamosauskas, and A. Varanavicius, “Femtosecond third-harmonic pulse generation by mixing of pulses with different duration,” Opt. Commun.186(1-3), 211–217 (2000).
[CrossRef]

Wang, D.

Wise, F. W.

X. Liu, L. J. Qian, and F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun.144(4-6), 265–268 (1997).
[CrossRef]

Wu, B.

Wu, Y.

Yamamoto, K.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation,” IEEE J. Quantum Electron.30(7), 1596–1604 (1994).
[CrossRef]

Yan, X.

Yonemura, M.

T. Zhang and M. Yonemura, “Pulse shaping of ultrashort laser pulses with nonlinear optical crystals,” Jpn. J. Appl. Phys.38(Part 1, No. 11), 6351–6358 (1999).
[CrossRef]

You, G.

Yu, T.

Zhang, T.

T. Zhang and M. Yonemura, “Pulse shaping of ultrashort laser pulses with nonlinear optical crystals,” Jpn. J. Appl. Phys.38(Part 1, No. 11), 6351–6358 (1999).
[CrossRef]

IEEE J. Quantum Electron. (5)

O. E. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron.25(12), 2464–2468 (1989).
[CrossRef]

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation,” IEEE J. Quantum Electron.30(7), 1596–1604 (1994).
[CrossRef]

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron.30(12), 2950–2952 (1994).
[CrossRef]

R. Eckardt and J. Reintjes, “Phase matching limitations of high efficiency second harmonic generation,” IEEE J. Quantum Electron.20(10), 1178–1187 (1984).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (7)

Jpn. J. Appl. Phys. (1)

T. Zhang and M. Yonemura, “Pulse shaping of ultrashort laser pulses with nonlinear optical crystals,” Jpn. J. Appl. Phys.38(Part 1, No. 11), 6351–6358 (1999).
[CrossRef]

Opt. Commun. (3)

X. Liu, L. J. Qian, and F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun.144(4-6), 265–268 (1997).
[CrossRef]

A. Dubietis, G. Tamosauskas, and A. Varanavicius, “Femtosecond third-harmonic pulse generation by mixing of pulses with different duration,” Opt. Commun.186(1-3), 211–217 (2000).
[CrossRef]

R. A. Haas, “Influence of a constant temperature gradient on the spectral-bandwidth of second-harmonic generation in nonlinear crystals,” Opt. Commun.113(4-6), 523–529 (1995).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Proc. SPIE (1)

A. V. Smith, “How to select nonlinear crystals and model their performance using SNLO software,” Proc. SPIE3928, 62–69 (2000).
[CrossRef]

Quantum Electron. (1)

S. G. Grechin, V. G. Dmitriev, V. A. D'yakov, and V. I. Pryalkin, “Anomalous temperature-independent birefringence in a biaxial optical LBO crystal,” Quantum Electron.30(4), 285–286 (2000).
[CrossRef]

Other (1)

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Phase-matching temperature versus FH wavelength for NCPM SHG in LBO [11].

Fig. 2
Fig. 2

Peak irradiance of the broadband FH pulses required to achieve the conversion efficiency of 30%, 50% and 70%. The temperature along the LBO crystal is uniform and equal to 149.2°C.

Fig. 3
Fig. 3

SHG conversion efficiency of the broadband FH pulses dependence on dT/dz for various values of the peak irradiances (0.5, 1, 2, 5 and 10 GW/cm2) and spectral bandwidth: 10 nm (a), 20 nm (b), 50 nm (c) and 100 nm (d).

Fig. 4
Fig. 4

Temporal and spectral characteristics of the FH and SH pulses when a constant temperature gradient is imposed along the LBO crystal. LBO crystal length is 3 cm (a, b) and 6 cm (c, d). The initial temporal and spectral profiles of the FH pulse are plotted as dotted-dashed curves.

Fig. 5
Fig. 5

Experimental setup – fiber laser system. Insets: (a) autocorrelation of amplified FH pulse, (b) microscopic picture of CCC fiber cleaved endface.

Fig. 6
Fig. 6

Custom-designed crystal oven.

Fig. 7
Fig. 7

Comparison of the generated SH spectrum with FH spectrum at different FH pulse energy (0.73, 1.65 and 2.5 µJ), when the temperature gradient is applied along the crystal. ΔT is a temperature difference between crystal ends. Grey curves with filled regions represent FH spectra and thick red curves represent SH spectra.

Fig. 8
Fig. 8

SHG conversion efficiency versus pulse energy in case of 3 cm long crystal with longitudinal temperature gradient (circles), 3 cm long crystal without longitudinal temperature gradient (squares) and 1 cm long crystal without the longitudinal temperature gradient (critical phase matching) (triangles).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A 1 z = ν 13 A 1 t +i g 1 2 2 A 1 t 2 + h 1 6 3 A 1 t 3 α 1 2 A 1 i σ 1 A 3 A 2 * e iΦ( z ) , A 2 z = ν 23 A 2 t +i g 2 2 2 A 2 t 2 + h 2 6 3 A 2 t 3 α 2 2 A 2 i σ 2 A 3 A 1 * e iΦ( z ) , A 3 z =i g 3 2 2 A 3 t 2 + h 3 6 3 A 3 t 3 α 3 2 A 3 i σ 3 A 1 A 2 e +iΦ( z ) ,
Φ( z )= 0 z Δk( T( z ' ) )d z ' = 0 z [ k 3 ( T( z ' ) ) k 1 ( T( z ' ) ) k 2 ( T( z ' ) ) ]d z ' ,
T( z )= T c +( dT/dz )( zL/2 ),
A j ( t )= a j0 exp( ( 1+i γ j )2ln( 2 ) t 2 / τ j 2 ),
Δ λ j λ j 2 2ln2 1+ γ j 2 /( π τ j c ),

Metrics