Abstract

We demonstrate the first integrated transmitter for serial 100 Gb/s NRZ-OOK modulation in datacom and telecom applications. The transmitter relies on the use of an electro-optic polymer modulator and the hybrid integration of an InP laser diode and InP-DHBT electronics with the polymer board. Evaluation is made at 80 and 100 Gb/s through eye-diagrams and BER measurements using a receiver module that integrates a pin-photodiode and an electrical 1:2 demultiplexer. Error-free performance is confirmed both at 80 and 100 Gb/s revealing the viability of the approach and the potential of the technology.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Roberts, M. O’Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol.27(16), 3546–3559 (2009).
    [CrossRef]
  2. J. Theodoras and K. Grobe, “100 GbE – the future of ethernet,” white paper, August (2009), http://www.advaoptical.com/en/resources/white-papers/100gbe-the-future-of-ethernet.aspx
  3. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol.30(4), 448–457 (2012).
    [CrossRef]
  4. C. Kazmierski, A. Konczykowska, F. Jorge, F. Blache, M. Riet, C. Jany, and A. Scavennec, “100 Gb/s operation of an AlGaInAs semi-insulating buried heterojunction EML,” Proc. OFC/NFOEC’09, OThT7 (2009).
  5. J. Li, C. Schubert, R. H. Derksen, R. Makon, V. Hurm, A. Djupsjöbacka, M. Chacinski, U. Westergren, H.-G. Bach, G. G. Mekonnen, A. G. Steffan, R. Driad, H. Walcher, and J. Rosenzweig, “112 Gb/s Field trial of complete ETDM system based on monolithically integrated transmitter & receiver modules for use in 100GbE,” Proc. ECOC’10, P4.03 (2010).
  6. W. Freude, J. Leuthold, L. Alloatti, T. Vallaitis, D. Korn, R. Palmer, C. Koos, J. Brosi, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, B. Breiten, F. Diederich, A. Barklund, R. Dinu, and J. Wieland, “100 Gbit/s electro-optic modulator and 56 Gbit/s wavelength converter for DQPSK data in silicon-organic hybrid (SOH) technology,” Proc. IEEE Photonics Society, WB2.1 (2010).
  7. H. Huang, J.-Y. Yang, Y. Yue, Y. Ren, S. R. Nuccio, R. Dinu, D. Parekh, C. J. Chang-Hasnain, and A. Willner, “100-Gbit/s amplitude and phase modulation characterization of a single-drive, Low-Vπ polymer mach-zehnder modulator,” Proc. OFC/NFOEC’12, OW4F.5 (2012).
  8. P. Groumas, Z. Zhang, V. Katopodis, Ch. Kouloumentas, D. de Felipe, R. Dinu, E. Miller, J. Mallari, G. Cangini, N. Keil, H. Avramopoulos, and N. Grote, “Complex monolithic and InP hybrid integration on high bandwidth electro-optic polymer platform,” Opt. Lett.37(16), 3465–3467 (2012).
    [CrossRef]
  9. A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, and J. Godin, “InP DHBT delector-driver with 2 X 2.7swing for 100 Gbit/s operation,” Electron. Lett.45(24), 1235–1236 (2009).
    [CrossRef]
  10. G. G. Mekonnen, H.-G. Bach, R. Kunkel, C. Schubert, D. Pech, T. Rosin, A. Konczykowska, F. Jorge, A. Scavennec, and M. Riet, “Hybrid co-packaged receiver module with pin-photodiode chip and DEMUX-IC for 107 Gb/s data rates,” Proc. ECOC’09, paper 9.2.6 (2009).

2012

2009

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, and J. Godin, “InP DHBT delector-driver with 2 X 2.7swing for 100 Gbit/s operation,” Electron. Lett.45(24), 1235–1236 (2009).
[CrossRef]

K. Roberts, M. O’Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol.27(16), 3546–3559 (2009).
[CrossRef]

Avramopoulos, H.

Awadalla, A.

Cangini, G.

de Felipe, D.

Dinu, R.

Dupuy, J.-Y.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, and J. Godin, “InP DHBT delector-driver with 2 X 2.7swing for 100 Gbit/s operation,” Electron. Lett.45(24), 1235–1236 (2009).
[CrossRef]

Godin, J.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, and J. Godin, “InP DHBT delector-driver with 2 X 2.7swing for 100 Gbit/s operation,” Electron. Lett.45(24), 1235–1236 (2009).
[CrossRef]

Grote, N.

Groumas, P.

Jorge, F.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, and J. Godin, “InP DHBT delector-driver with 2 X 2.7swing for 100 Gbit/s operation,” Electron. Lett.45(24), 1235–1236 (2009).
[CrossRef]

Katopodis, V.

Keil, N.

Konczykowska, A.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, and J. Godin, “InP DHBT delector-driver with 2 X 2.7swing for 100 Gbit/s operation,” Electron. Lett.45(24), 1235–1236 (2009).
[CrossRef]

Kouloumentas, Ch.

Krause, D. J.

Laperle, C.

Mallari, J.

Miller, E.

Moulu, J.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, and J. Godin, “InP DHBT delector-driver with 2 X 2.7swing for 100 Gbit/s operation,” Electron. Lett.45(24), 1235–1236 (2009).
[CrossRef]

O’Sullivan, M.

Riet, M.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, and J. Godin, “InP DHBT delector-driver with 2 X 2.7swing for 100 Gbit/s operation,” Electron. Lett.45(24), 1235–1236 (2009).
[CrossRef]

Roberts, K.

Sun, H.

Taubenblatt, M. A.

Wu, K.-T.

Zhang, Z.

Electron. Lett.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, and J. Godin, “InP DHBT delector-driver with 2 X 2.7swing for 100 Gbit/s operation,” Electron. Lett.45(24), 1235–1236 (2009).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Other

C. Kazmierski, A. Konczykowska, F. Jorge, F. Blache, M. Riet, C. Jany, and A. Scavennec, “100 Gb/s operation of an AlGaInAs semi-insulating buried heterojunction EML,” Proc. OFC/NFOEC’09, OThT7 (2009).

J. Li, C. Schubert, R. H. Derksen, R. Makon, V. Hurm, A. Djupsjöbacka, M. Chacinski, U. Westergren, H.-G. Bach, G. G. Mekonnen, A. G. Steffan, R. Driad, H. Walcher, and J. Rosenzweig, “112 Gb/s Field trial of complete ETDM system based on monolithically integrated transmitter & receiver modules for use in 100GbE,” Proc. ECOC’10, P4.03 (2010).

W. Freude, J. Leuthold, L. Alloatti, T. Vallaitis, D. Korn, R. Palmer, C. Koos, J. Brosi, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, B. Breiten, F. Diederich, A. Barklund, R. Dinu, and J. Wieland, “100 Gbit/s electro-optic modulator and 56 Gbit/s wavelength converter for DQPSK data in silicon-organic hybrid (SOH) technology,” Proc. IEEE Photonics Society, WB2.1 (2010).

H. Huang, J.-Y. Yang, Y. Yue, Y. Ren, S. R. Nuccio, R. Dinu, D. Parekh, C. J. Chang-Hasnain, and A. Willner, “100-Gbit/s amplitude and phase modulation characterization of a single-drive, Low-Vπ polymer mach-zehnder modulator,” Proc. OFC/NFOEC’12, OW4F.5 (2012).

J. Theodoras and K. Grobe, “100 GbE – the future of ethernet,” white paper, August (2009), http://www.advaoptical.com/en/resources/white-papers/100gbe-the-future-of-ethernet.aspx

G. G. Mekonnen, H.-G. Bach, R. Kunkel, C. Schubert, D. Pech, T. Rosin, A. Konczykowska, F. Jorge, A. Scavennec, and M. Riet, “Hybrid co-packaged receiver module with pin-photodiode chip and DEMUX-IC for 107 Gb/s data rates,” Proc. ECOC’09, paper 9.2.6 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Main building blocks and final assembly of the 100 Gb/s transmitter: (a) Optical sub-assembly consisting of the polymer MZM and the hybridly integrated DFB laser, (b) circuit microphotograph of the MUX-DRV chip, and (c) transmitter assembly in the box. Photographs of individual blocks and final assembly are not shown in scale.

Fig. 2
Fig. 2

Experimental set-up. The indicated frequencies and data rates correspond to 80 Gb/s operation and should be scaled accordingly for operation at 100 Gb/s. The picture on the right-hand side depicts the integrated pin-DEMUX receiver module that was utilized for the BER evaluation of the signals.

Fig. 3
Fig. 3

RF-spectra of the clock signals at the output of the frequency doubler at (a) 40 GHz, and (b) 50 GHz. These clock signals feed the MUX-DRV circuit of the transmitter and the DEMUX circuit of the integrated receiver when operating at 80 or 100 Gb/s, respectively. The difference between the second harmonic and the fundamental harmonic is lower than 12.5 dB in both cases.

Fig. 4
Fig. 4

Eye-diagrams (left panel) and corresponding optical spectra (right panel) at the output of the transmitter: (a)-(b) 80 Gb/s, and (c)-(d) 100 Gb/s. The optical spectra are centered at 1551.3 nm and are presented with 0.01 nm resolution.

Fig. 5
Fig. 5

Eye-diagrams of the electrical signals at the output of the integrated receiver after detection and 1:2 electrical demultiplexing: (a) Tributary at 40 Gb/s corresponding to 80 Gb/s optical signal, and (b) tributary at 50 Gb/s corresponding to 100 Gb/s optical signal.

Fig. 6
Fig. 6

BER evaluation of the integrated transmitter at: (a) 80 Gb/s, and (b) 100 Gb/s signal. In both cases, channels 1-4 correspond to the first 40 or 50 Gb/s tributary and channels 5-8 to the second one.

Metrics