Abstract

Thin films of polycrystalline cerium substituted yttrium iron garnet (CeYIG) were grown on an yttrium iron garnet (YIG) seed layer on Si and Si-on-insulator substrates by pulsed laser deposition, and their optical and magneto-optical properties in the near-IR region were measured. A YIG seed layer of ~30 nm thick processed by rapid thermal anneal at 800°C provided a virtual substrate to promote crystallization of the CeYIG. The effect of the thermal budget of the YIG/CeYIG growth process on the film structure, magnetic and magnetooptical properties was determined.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
    [CrossRef]
  2. M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photon. Technol. Lett.5(2), 198–200 (1993).
    [CrossRef]
  3. S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express20(2), 1839–1848 (2012).
    [CrossRef] [PubMed]
  4. M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express19(12), 11740–11745 (2011).
    [CrossRef] [PubMed]
  5. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett.30(15), 1989–1991 (2005).
    [CrossRef] [PubMed]
  6. S. Baek, M. Dokukin, K. Yayoi, A. V. Baryshev, and M. Inoue, “Diffraction-modified Kerr rotation from patterned garnet films,” J. Appl. Phys.107(9), 09 A923 (2010).
    [CrossRef]
  7. C. Xiong, W. H. P. Pernice, M. Li, and H. X. Tang, “High performance nanophotonic circuits based on partially buried horizontal slot waveguides,” Opt. Express18(20), 20690–20698 (2010).
    [CrossRef] [PubMed]
  8. B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Yi-Qun Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn.38(3), 1564–1567 (2002).
    [CrossRef]
  9. S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys.105(3), 293–296 (2003).
    [CrossRef]
  10. S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Structure and lattice deformation of ce-substituted yttrium iron garnet film prepared by RF sputtering,” Jpn. J. Appl. Phys.32(Part 1, No. 7), 3154–3159 (1993).
    [CrossRef]
  11. T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71(12), 1640–1642 (1997).
    [CrossRef]
  12. T. Shintaku, “Integrated optical isolator based on nonreciprocal higher-order mode conversion,” Appl. Phys. Lett.66(21), 2789–2791 (1995).
    [CrossRef]
  13. M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” J. Appl. Phys.70(11), 7065 (1991).
    [CrossRef]
  14. M. Gomi, K. Satoh, H. Furuyama, and M. Abe, “Sputter deposition of Ce-substituted iron garnet films with giant magneto-optical effect,” J. Magn. Soc. Jpn.13(2), 163–166 (1989).
    [CrossRef]
  15. M. Gomi, K. Satoh, and M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys.27(Part 2, No. 8), L1536–L1538 (1988).
    [CrossRef]
  16. M. C. Sekhar, M. R. Singh, S. Basu, and S. Pinnepalli, “Giant Faraday rotation in BixCe3-xFe5O12 epitaxial garnet films,” Opt. Express20(9), 9624–9639 (2012).
    [CrossRef] [PubMed]
  17. L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE7941, 5–10 (2011).
  18. P. Grosseau, A. Bachiorrini, and B. Guilhot, “Preparation of polycrystalline yttrium iron garnet ceramics,” Powder Technol.93(3), 247–251 (1997).
    [CrossRef]
  19. N. B. Ibrahim, C. Edwards, and S. B. Palmer, “Pulsed laser ablation deposition of yttrium iron garnet and cerium-substituted YIG films,” J. Magn. Magn. Mater.220(2-3), 183–194 (2000).
    [CrossRef]
  20. T. Suzuki, “Magnetic and magneto-optic properties of rapid thermally crystallized garnet films,” J. Appl. Phys.69(8), 4756–4760 (1991).
    [CrossRef]
  21. K. Sato, Hikari-to-jiki (Asakura-shoten, Tokyo, 2007).
  22. S. Kahl and A. M. Grishin, “Pulsed laser deposition of Y3Fe5O12 and Bi3Fe5O12 films on garnet substrates,” J. Appl. Phys.93, 6945–6947 (2003).
    [CrossRef]
  23. D. E. Aspnes and J. B. Theeten, “Optical properties of the interface between Si and its thermally grown oxide,” Phys. Rev. Lett.43(14), 1046–1050 (1979).
    [CrossRef]
  24. T. Nakano, H. Yuri, and U. Kihara, “Magneto-optical properties of YIG single crystal by TSFZ method,” IEEE Trans. Magn.20(5), 986–988 (1984).
    [CrossRef]
  25. W. Wettling, B. Andlauer, P. Koidl, J. Schneider, and W. Tolksdorf, “Optical absorption and Faraday rotation in yttrium iron garnet,” Phys. Status Solidi B59(1), 63–70 (1973).
    [CrossRef]
  26. W. A. Crossley, R. W. Cooper, J. L. Page, and R. P. van Stapele, “Faraday rotation in rare-earth iron garnets,” Phys. Rev.181(2), 896–904 (1969).
    [CrossRef]
  27. Y. Xu, J. H. Yang, and X. J. Zhang, “Quantum theory of the strong magneto-optical effect of Ce-substituted yttrium iron garnet,” Phys. Rev. B Condens. Matter50(18), 13428–13434 (1994).
    [CrossRef] [PubMed]

2012

2011

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE7941, 5–10 (2011).

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express19(12), 11740–11745 (2011).
[CrossRef] [PubMed]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

2010

S. Baek, M. Dokukin, K. Yayoi, A. V. Baryshev, and M. Inoue, “Diffraction-modified Kerr rotation from patterned garnet films,” J. Appl. Phys.107(9), 09 A923 (2010).
[CrossRef]

C. Xiong, W. H. P. Pernice, M. Li, and H. X. Tang, “High performance nanophotonic circuits based on partially buried horizontal slot waveguides,” Opt. Express18(20), 20690–20698 (2010).
[CrossRef] [PubMed]

2005

2003

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys.105(3), 293–296 (2003).
[CrossRef]

S. Kahl and A. M. Grishin, “Pulsed laser deposition of Y3Fe5O12 and Bi3Fe5O12 films on garnet substrates,” J. Appl. Phys.93, 6945–6947 (2003).
[CrossRef]

2002

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Yi-Qun Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn.38(3), 1564–1567 (2002).
[CrossRef]

2000

N. B. Ibrahim, C. Edwards, and S. B. Palmer, “Pulsed laser ablation deposition of yttrium iron garnet and cerium-substituted YIG films,” J. Magn. Magn. Mater.220(2-3), 183–194 (2000).
[CrossRef]

1997

P. Grosseau, A. Bachiorrini, and B. Guilhot, “Preparation of polycrystalline yttrium iron garnet ceramics,” Powder Technol.93(3), 247–251 (1997).
[CrossRef]

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71(12), 1640–1642 (1997).
[CrossRef]

1995

T. Shintaku, “Integrated optical isolator based on nonreciprocal higher-order mode conversion,” Appl. Phys. Lett.66(21), 2789–2791 (1995).
[CrossRef]

1994

Y. Xu, J. H. Yang, and X. J. Zhang, “Quantum theory of the strong magneto-optical effect of Ce-substituted yttrium iron garnet,” Phys. Rev. B Condens. Matter50(18), 13428–13434 (1994).
[CrossRef] [PubMed]

1993

S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Structure and lattice deformation of ce-substituted yttrium iron garnet film prepared by RF sputtering,” Jpn. J. Appl. Phys.32(Part 1, No. 7), 3154–3159 (1993).
[CrossRef]

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photon. Technol. Lett.5(2), 198–200 (1993).
[CrossRef]

1991

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” J. Appl. Phys.70(11), 7065 (1991).
[CrossRef]

T. Suzuki, “Magnetic and magneto-optic properties of rapid thermally crystallized garnet films,” J. Appl. Phys.69(8), 4756–4760 (1991).
[CrossRef]

1989

M. Gomi, K. Satoh, H. Furuyama, and M. Abe, “Sputter deposition of Ce-substituted iron garnet films with giant magneto-optical effect,” J. Magn. Soc. Jpn.13(2), 163–166 (1989).
[CrossRef]

1988

M. Gomi, K. Satoh, and M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys.27(Part 2, No. 8), L1536–L1538 (1988).
[CrossRef]

1984

T. Nakano, H. Yuri, and U. Kihara, “Magneto-optical properties of YIG single crystal by TSFZ method,” IEEE Trans. Magn.20(5), 986–988 (1984).
[CrossRef]

1979

D. E. Aspnes and J. B. Theeten, “Optical properties of the interface between Si and its thermally grown oxide,” Phys. Rev. Lett.43(14), 1046–1050 (1979).
[CrossRef]

1973

W. Wettling, B. Andlauer, P. Koidl, J. Schneider, and W. Tolksdorf, “Optical absorption and Faraday rotation in yttrium iron garnet,” Phys. Status Solidi B59(1), 63–70 (1973).
[CrossRef]

1969

W. A. Crossley, R. W. Cooper, J. L. Page, and R. P. van Stapele, “Faraday rotation in rare-earth iron garnets,” Phys. Rev.181(2), 896–904 (1969).
[CrossRef]

Abe, M.

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” J. Appl. Phys.70(11), 7065 (1991).
[CrossRef]

M. Gomi, K. Satoh, H. Furuyama, and M. Abe, “Sputter deposition of Ce-substituted iron garnet films with giant magneto-optical effect,” J. Magn. Soc. Jpn.13(2), 163–166 (1989).
[CrossRef]

M. Gomi, K. Satoh, and M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys.27(Part 2, No. 8), L1536–L1538 (1988).
[CrossRef]

Andlauer, B.

W. Wettling, B. Andlauer, P. Koidl, J. Schneider, and W. Tolksdorf, “Optical absorption and Faraday rotation in yttrium iron garnet,” Phys. Status Solidi B59(1), 63–70 (1973).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes and J. B. Theeten, “Optical properties of the interface between Si and its thermally grown oxide,” Phys. Rev. Lett.43(14), 1046–1050 (1979).
[CrossRef]

Bachiorrini, A.

P. Grosseau, A. Bachiorrini, and B. Guilhot, “Preparation of polycrystalline yttrium iron garnet ceramics,” Powder Technol.93(3), 247–251 (1997).
[CrossRef]

Baek, S.

S. Baek, M. Dokukin, K. Yayoi, A. V. Baryshev, and M. Inoue, “Diffraction-modified Kerr rotation from patterned garnet films,” J. Appl. Phys.107(9), 09 A923 (2010).
[CrossRef]

Baets, R.

Baryshev, A. V.

S. Baek, M. Dokukin, K. Yayoi, A. V. Baryshev, and M. Inoue, “Diffraction-modified Kerr rotation from patterned garnet films,” J. Appl. Phys.107(9), 09 A923 (2010).
[CrossRef]

Basu, S.

Bi, L.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE7941, 5–10 (2011).

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

Bowers, J. E.

Cherif, M.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Yi-Qun Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn.38(3), 1564–1567 (2002).
[CrossRef]

Cooper, R. W.

W. A. Crossley, R. W. Cooper, J. L. Page, and R. P. van Stapele, “Faraday rotation in rare-earth iron garnets,” Phys. Rev.181(2), 896–904 (1969).
[CrossRef]

Crossley, W. A.

W. A. Crossley, R. W. Cooper, J. L. Page, and R. P. van Stapele, “Faraday rotation in rare-earth iron garnets,” Phys. Rev.181(2), 896–904 (1969).
[CrossRef]

Dionne, G. F.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE7941, 5–10 (2011).

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

Dokukin, M.

S. Baek, M. Dokukin, K. Yayoi, A. V. Baryshev, and M. Inoue, “Diffraction-modified Kerr rotation from patterned garnet films,” J. Appl. Phys.107(9), 09 A923 (2010).
[CrossRef]

Edwards, C.

N. B. Ibrahim, C. Edwards, and S. B. Palmer, “Pulsed laser ablation deposition of yttrium iron garnet and cerium-substituted YIG films,” J. Magn. Magn. Mater.220(2-3), 183–194 (2000).
[CrossRef]

Fan, S.

Furukawa, Y.

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys.105(3), 293–296 (2003).
[CrossRef]

Furuyama, H.

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” J. Appl. Phys.70(11), 7065 (1991).
[CrossRef]

M. Gomi, K. Satoh, H. Furuyama, and M. Abe, “Sputter deposition of Ce-substituted iron garnet films with giant magneto-optical effect,” J. Magn. Soc. Jpn.13(2), 163–166 (1989).
[CrossRef]

Ghosh, S.

Gomi, M.

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” J. Appl. Phys.70(11), 7065 (1991).
[CrossRef]

M. Gomi, K. Satoh, H. Furuyama, and M. Abe, “Sputter deposition of Ce-substituted iron garnet films with giant magneto-optical effect,” J. Magn. Soc. Jpn.13(2), 163–166 (1989).
[CrossRef]

M. Gomi, K. Satoh, and M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys.27(Part 2, No. 8), L1536–L1538 (1988).
[CrossRef]

Grishin, A. M.

S. Kahl and A. M. Grishin, “Pulsed laser deposition of Y3Fe5O12 and Bi3Fe5O12 films on garnet substrates,” J. Appl. Phys.93, 6945–6947 (2003).
[CrossRef]

Grosseau, P.

P. Grosseau, A. Bachiorrini, and B. Guilhot, “Preparation of polycrystalline yttrium iron garnet ceramics,” Powder Technol.93(3), 247–251 (1997).
[CrossRef]

Guilhot, B.

P. Grosseau, A. Bachiorrini, and B. Guilhot, “Preparation of polycrystalline yttrium iron garnet ceramics,” Powder Technol.93(3), 247–251 (1997).
[CrossRef]

Gutierrez, C. J.

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photon. Technol. Lett.5(2), 198–200 (1993).
[CrossRef]

Higuchi, S.

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys.105(3), 293–296 (2003).
[CrossRef]

Hu, J.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE7941, 5–10 (2011).

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

Ibrahim, N. B.

N. B. Ibrahim, C. Edwards, and S. B. Palmer, “Pulsed laser ablation deposition of yttrium iron garnet and cerium-substituted YIG films,” J. Magn. Magn. Mater.220(2-3), 183–194 (2000).
[CrossRef]

Ilic, I.

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photon. Technol. Lett.5(2), 198–200 (1993).
[CrossRef]

Inoue, M.

S. Baek, M. Dokukin, K. Yayoi, A. V. Baryshev, and M. Inoue, “Diffraction-modified Kerr rotation from patterned garnet films,” J. Appl. Phys.107(9), 09 A923 (2010).
[CrossRef]

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

Kahl, S.

S. Kahl and A. M. Grishin, “Pulsed laser deposition of Y3Fe5O12 and Bi3Fe5O12 films on garnet substrates,” J. Appl. Phys.93, 6945–6947 (2003).
[CrossRef]

Kamada, O.

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys.105(3), 293–296 (2003).
[CrossRef]

Keyvavinia, S.

Kihara, U.

T. Nakano, H. Yuri, and U. Kihara, “Magneto-optical properties of YIG single crystal by TSFZ method,” IEEE Trans. Magn.20(5), 986–988 (1984).
[CrossRef]

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

Kimerling, L.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE7941, 5–10 (2011).

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

Kitamura, K.

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys.105(3), 293–296 (2003).
[CrossRef]

Koidl, P.

W. Wettling, B. Andlauer, P. Koidl, J. Schneider, and W. Tolksdorf, “Optical absorption and Faraday rotation in yttrium iron garnet,” Phys. Status Solidi B59(1), 63–70 (1973).
[CrossRef]

Kromer, H.

Levy, M.

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photon. Technol. Lett.5(2), 198–200 (1993).
[CrossRef]

Li, M.

Lorenzo, J.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Yi-Qun Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn.38(3), 1564–1567 (2002).
[CrossRef]

Mino, S.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71(12), 1640–1642 (1997).
[CrossRef]

S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Structure and lattice deformation of ce-substituted yttrium iron garnet film prepared by RF sputtering,” Jpn. J. Appl. Phys.32(Part 1, No. 7), 3154–3159 (1993).
[CrossRef]

Mizumoto, T.

Nakano, T.

T. Nakano, H. Yuri, and U. Kihara, “Magneto-optical properties of YIG single crystal by TSFZ method,” IEEE Trans. Magn.20(5), 986–988 (1984).
[CrossRef]

Osgood, R. M.

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photon. Technol. Lett.5(2), 198–200 (1993).
[CrossRef]

Page, J. L.

W. A. Crossley, R. W. Cooper, J. L. Page, and R. P. van Stapele, “Faraday rotation in rare-earth iron garnets,” Phys. Rev.181(2), 896–904 (1969).
[CrossRef]

Palmer, S. B.

N. B. Ibrahim, C. Edwards, and S. B. Palmer, “Pulsed laser ablation deposition of yttrium iron garnet and cerium-substituted YIG films,” J. Magn. Magn. Mater.220(2-3), 183–194 (2000).
[CrossRef]

Pernice, W. H. P.

Pinnepalli, S.

Pintus, P.

Prinz, G. A.

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photon. Technol. Lett.5(2), 198–200 (1993).
[CrossRef]

Roelkens, G.

Ross, C. A.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE7941, 5–10 (2011).

Satoh, K.

M. Gomi, K. Satoh, H. Furuyama, and M. Abe, “Sputter deposition of Ce-substituted iron garnet films with giant magneto-optical effect,” J. Magn. Soc. Jpn.13(2), 163–166 (1989).
[CrossRef]

M. Gomi, K. Satoh, and M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys.27(Part 2, No. 8), L1536–L1538 (1988).
[CrossRef]

Scarmozzino, R.

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photon. Technol. Lett.5(2), 198–200 (1993).
[CrossRef]

Schneider, J.

W. Wettling, B. Andlauer, P. Koidl, J. Schneider, and W. Tolksdorf, “Optical absorption and Faraday rotation in yttrium iron garnet,” Phys. Status Solidi B59(1), 63–70 (1973).
[CrossRef]

Sekhar, M. C.

Shibukawa, A.

S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Structure and lattice deformation of ce-substituted yttrium iron garnet film prepared by RF sputtering,” Jpn. J. Appl. Phys.32(Part 1, No. 7), 3154–3159 (1993).
[CrossRef]

Shintaku, T.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71(12), 1640–1642 (1997).
[CrossRef]

T. Shintaku, “Integrated optical isolator based on nonreciprocal higher-order mode conversion,” Appl. Phys. Lett.66(21), 2789–2791 (1995).
[CrossRef]

S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Structure and lattice deformation of ce-substituted yttrium iron garnet film prepared by RF sputtering,” Jpn. J. Appl. Phys.32(Part 1, No. 7), 3154–3159 (1993).
[CrossRef]

Singh, M. R.

Stadler, B.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Yi-Qun Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn.38(3), 1564–1567 (2002).
[CrossRef]

Suzuki, T.

T. Suzuki, “Magnetic and magneto-optic properties of rapid thermally crystallized garnet films,” J. Appl. Phys.69(8), 4756–4760 (1991).
[CrossRef]

Takekawa, S.

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys.105(3), 293–296 (2003).
[CrossRef]

Tang, H. X.

Tate, A.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71(12), 1640–1642 (1997).
[CrossRef]

S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Structure and lattice deformation of ce-substituted yttrium iron garnet film prepared by RF sputtering,” Jpn. J. Appl. Phys.32(Part 1, No. 7), 3154–3159 (1993).
[CrossRef]

Theeten, J. B.

D. E. Aspnes and J. B. Theeten, “Optical properties of the interface between Si and its thermally grown oxide,” Phys. Rev. Lett.43(14), 1046–1050 (1979).
[CrossRef]

Tien, M.-C.

Tolksdorf, W.

W. Wettling, B. Andlauer, P. Koidl, J. Schneider, and W. Tolksdorf, “Optical absorption and Faraday rotation in yttrium iron garnet,” Phys. Status Solidi B59(1), 63–70 (1973).
[CrossRef]

Uno, T.

S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Structure and lattice deformation of ce-substituted yttrium iron garnet film prepared by RF sputtering,” Jpn. J. Appl. Phys.32(Part 1, No. 7), 3154–3159 (1993).
[CrossRef]

Uyeda, K.

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys.105(3), 293–296 (2003).
[CrossRef]

Vaccaro, K.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Yi-Qun Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn.38(3), 1564–1567 (2002).
[CrossRef]

Van Roy, W.

van Stapele, R. P.

W. A. Crossley, R. W. Cooper, J. L. Page, and R. P. van Stapele, “Faraday rotation in rare-earth iron garnets,” Phys. Rev.181(2), 896–904 (1969).
[CrossRef]

Wang, Z.

Wettling, W.

W. Wettling, B. Andlauer, P. Koidl, J. Schneider, and W. Tolksdorf, “Optical absorption and Faraday rotation in yttrium iron garnet,” Phys. Status Solidi B59(1), 63–70 (1973).
[CrossRef]

Wolfe, R.

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photon. Technol. Lett.5(2), 198–200 (1993).
[CrossRef]

Xiong, C.

Xu, Y.

Y. Xu, J. H. Yang, and X. J. Zhang, “Quantum theory of the strong magneto-optical effect of Ce-substituted yttrium iron garnet,” Phys. Rev. B Condens. Matter50(18), 13428–13434 (1994).
[CrossRef] [PubMed]

Yang, J. H.

Y. Xu, J. H. Yang, and X. J. Zhang, “Quantum theory of the strong magneto-optical effect of Ce-substituted yttrium iron garnet,” Phys. Rev. B Condens. Matter50(18), 13428–13434 (1994).
[CrossRef] [PubMed]

Yayoi, K.

S. Baek, M. Dokukin, K. Yayoi, A. V. Baryshev, and M. Inoue, “Diffraction-modified Kerr rotation from patterned garnet films,” J. Appl. Phys.107(9), 09 A923 (2010).
[CrossRef]

Yip, P.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Yi-Qun Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn.38(3), 1564–1567 (2002).
[CrossRef]

Yi-Qun Li,

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Yi-Qun Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn.38(3), 1564–1567 (2002).
[CrossRef]

Yuri, H.

T. Nakano, H. Yuri, and U. Kihara, “Magneto-optical properties of YIG single crystal by TSFZ method,” IEEE Trans. Magn.20(5), 986–988 (1984).
[CrossRef]

Zhang, X. J.

Y. Xu, J. H. Yang, and X. J. Zhang, “Quantum theory of the strong magneto-optical effect of Ce-substituted yttrium iron garnet,” Phys. Rev. B Condens. Matter50(18), 13428–13434 (1994).
[CrossRef] [PubMed]

Appl. Phys. Lett.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71(12), 1640–1642 (1997).
[CrossRef]

T. Shintaku, “Integrated optical isolator based on nonreciprocal higher-order mode conversion,” Appl. Phys. Lett.66(21), 2789–2791 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Levy, I. Ilic, R. Scarmozzino, R. M. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz “Thin-film-magnet magnetooptic waveguide isolator,” IEEE Photon. Technol. Lett.5(2), 198–200 (1993).
[CrossRef]

IEEE Trans. Magn.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Yi-Qun Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn.38(3), 1564–1567 (2002).
[CrossRef]

T. Nakano, H. Yuri, and U. Kihara, “Magneto-optical properties of YIG single crystal by TSFZ method,” IEEE Trans. Magn.20(5), 986–988 (1984).
[CrossRef]

J. Appl. Phys.

T. Suzuki, “Magnetic and magneto-optic properties of rapid thermally crystallized garnet films,” J. Appl. Phys.69(8), 4756–4760 (1991).
[CrossRef]

S. Kahl and A. M. Grishin, “Pulsed laser deposition of Y3Fe5O12 and Bi3Fe5O12 films on garnet substrates,” J. Appl. Phys.93, 6945–6947 (2003).
[CrossRef]

S. Baek, M. Dokukin, K. Yayoi, A. V. Baryshev, and M. Inoue, “Diffraction-modified Kerr rotation from patterned garnet films,” J. Appl. Phys.107(9), 09 A923 (2010).
[CrossRef]

M. Gomi, H. Furuyama, and M. Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering,” J. Appl. Phys.70(11), 7065 (1991).
[CrossRef]

J. Magn. Magn. Mater.

N. B. Ibrahim, C. Edwards, and S. B. Palmer, “Pulsed laser ablation deposition of yttrium iron garnet and cerium-substituted YIG films,” J. Magn. Magn. Mater.220(2-3), 183–194 (2000).
[CrossRef]

J. Magn. Soc. Jpn.

M. Gomi, K. Satoh, H. Furuyama, and M. Abe, “Sputter deposition of Ce-substituted iron garnet films with giant magneto-optical effect,” J. Magn. Soc. Jpn.13(2), 163–166 (1989).
[CrossRef]

Jpn. J. Appl. Phys.

M. Gomi, K. Satoh, and M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys.27(Part 2, No. 8), L1536–L1538 (1988).
[CrossRef]

S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Structure and lattice deformation of ce-substituted yttrium iron garnet film prepared by RF sputtering,” Jpn. J. Appl. Phys.32(Part 1, No. 7), 3154–3159 (1993).
[CrossRef]

Nat. Photonics

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

W. A. Crossley, R. W. Cooper, J. L. Page, and R. P. van Stapele, “Faraday rotation in rare-earth iron garnets,” Phys. Rev.181(2), 896–904 (1969).
[CrossRef]

Phys. Rev. B Condens. Matter

Y. Xu, J. H. Yang, and X. J. Zhang, “Quantum theory of the strong magneto-optical effect of Ce-substituted yttrium iron garnet,” Phys. Rev. B Condens. Matter50(18), 13428–13434 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett.

D. E. Aspnes and J. B. Theeten, “Optical properties of the interface between Si and its thermally grown oxide,” Phys. Rev. Lett.43(14), 1046–1050 (1979).
[CrossRef]

Phys. Status Solidi B

W. Wettling, B. Andlauer, P. Koidl, J. Schneider, and W. Tolksdorf, “Optical absorption and Faraday rotation in yttrium iron garnet,” Phys. Status Solidi B59(1), 63–70 (1973).
[CrossRef]

Powder Technol.

P. Grosseau, A. Bachiorrini, and B. Guilhot, “Preparation of polycrystalline yttrium iron garnet ceramics,” Powder Technol.93(3), 247–251 (1997).
[CrossRef]

Proc. SPIE

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE7941, 5–10 (2011).

Sens. Actuators A Phys.

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys.105(3), 293–296 (2003).
[CrossRef]

Other

K. Sato, Hikari-to-jiki (Asakura-shoten, Tokyo, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

XRD patterns of the samples of Si substrate/YIG (349 nm) annealed at various temperatures for 3 minutes. White triangles show the locations of peaks from the reference powder pattern of Y3Fe5O12, while black triangles show hematite peaks.

Fig. 2
Fig. 2

Hysteresis loops of the samples of Si substrate/YIG (349 nm) after RTA at various temperatures for 3 minutes. (a) and (c) are in-plane and (b) and (d) are out-of-plane loops. (c) and (d) are enlarged portions of (a) and (b), respectively around zero field. Diamagnetic components from the substrate were subtracted.

Fig. 3
Fig. 3

XRD patterns of (a) the Si substrate/YIG samples and (b) Si substrate/YIG/CeYIG. The thicknesses of the YIG layers were varied from 6 to 136 nm, and the thickness of CeYIG was fixed at about 150 nm. White triangles show the peaks of Y3Fe5O12, black ones show hematite, and gray squares show yttria.

Fig. 4
Fig. 4

Hysteresis loops of Si substrate/YIG with various thicknesses. The samples were annealed at 800°C for 3 minutes in 5 slpm oxygen flow. In-plane (a) and out-of-plane (b) hysteresis after subtraction of diamagnetic contributions.

Fig. 5
Fig. 5

Hysteresis loops of the Si substrate/YIG/CeYIG (~150 nm) with various thickness of the YIG layer at RT. (a) In-plane and (b) out-of-plane field. (c) and (d) are enlarged figures of (a) and (b), respectively. Dia- and ferri-magnetic components originating from the substrate and YIG layers have been subtracted.

Fig. 6
Fig. 6

Transmission spectra of (a) Si substrate/YIG and (b) Si substrate/YIG/CeYIG with various thickness of the YIG layer. The line types and colors correspond to Fig. 5. (c) Transmission spectra of thick CeYIG samples. Fitted spectra overlap the measured data so cannot be separately resolved.

Fig. 7
Fig. 7

Refractive index and extinction coefficient spectra of (a) Si substrate, (b) YIG layer, and (c) CeYIG layer derived from the transmission spectra shown in Fig. 6.

Fig. 8
Fig. 8

AFM surface image of the SOI substrate/YIG (31 nm)/CeYIG (147 nm) in a 1μm by 1 μm area

Fig. 9
Fig. 9

Faraday rotation angle loops, which were measured at the wavelength of λ = 1550 nm at RT, of (a) Si substrate/YIG, (b-f) Si substrate/YIG/CeYIG (147 nm) with various thicknesses of YIG layers dYIG. Faraday rotation of the substrate was subtracted.

Tables (2)

Tables Icon

Table 1 Refractive indices and extinction coefficients of deposited films and single crystals at the wavelength of λ = 1550 nm at room temperature.

Tables Icon

Table 2 Figure of merit of deposited polycrystalline CeYIG on non-garnet substrates and single crystalline CeYIG on garnet substrates at the wavelength of λ = 1550 nm at RT.

Metrics