Abstract

Single quantum dot laser has earned extensive interest due to its peculiar properties, however, most of works are focused on the resonant case. In this paper, the lasing oscillation based on off-resonant quantum dot (QD)-cavity system is investigated detailedly through two-electrons QD model. By gradually increasing the pump rate, the typical lasing signatures are shown with and without detuning, include the spectral transition from multiple peaks to single peak, and antibunching to Poissonian distribution. It is also demonstrated how detuning factor strongly influence photon statistics and emission properties, specially, the side peak of spectra induced by the exchange energy (named “sub-peak”) will go across the main peak from left to right when the detuning is gradually increased, and, furthermore, we find the “sub-peak cross of spectra” will facilitate the lasing oscillation because of the existence of exchange energy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Mabuchi and A. Doherty, “Cavity quantum electrodynamics: Coherence in context,” Science298, 1372–1377 (2002).
    [CrossRef] [PubMed]
  2. G. JP Reithmaier, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, and A. TL Reinecke, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature432, 197–200 (2004).
    [CrossRef] [PubMed]
  3. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
    [CrossRef] [PubMed]
  4. S. Noda, “Seeking the Ultimate Nanolaser,” Science314, 260–261 (2006).
    [CrossRef] [PubMed]
  5. E. Moreau, I. Robert, J. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
    [CrossRef]
  6. C. Santori, D. Fattal, J. Vuckovic, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature419, 594–597 (2002).
    [CrossRef] [PubMed]
  7. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
    [CrossRef] [PubMed]
  8. P. Yao, P. Pathak, V. Rao, and S. Hughes, “Theory and design of chip-based quantum light sources using planar photonic crystals,” Proc. SPIE7211, 72110B (2009).
    [CrossRef]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
    [CrossRef] [PubMed]
  10. Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett.98, 117401 (2007).
    [CrossRef] [PubMed]
  11. S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett.93, 061104 (2008).
    [CrossRef]
  12. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2009).
    [CrossRef] [PubMed]
  13. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6, 279–283 (2010).
    [CrossRef]
  14. F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett.101, 083601 (2008).
    [CrossRef] [PubMed]
  15. A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett.103, 087405 (2009).
    [CrossRef] [PubMed]
  16. P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010).
    [CrossRef]
  17. S. Ritter, P. Gartner, C. Gies, and F. Jahnke, “Emission properties and photon statistics of a single quantum dot laser,” Opt. Express18, 9909–9921 (2010).
    [CrossRef] [PubMed]
  18. C. Gies, M. Florian, P. Gartner, and F. Jahnke, “The single quantum dot-laser: lasing and strong coupling in the high-excitation regime,” Opt. Express19, 14370–14388 (2011).
    [CrossRef] [PubMed]
  19. M. Rontani, F. Rossi, F. Manghi, and E. Molinari, “Coulomb correlation effects in semiconductor quantum dots: The role of dimensionality,” Phys. Rev. B59, 10165–10175 (1999).
    [CrossRef]
  20. N. Baer, P. Gartner, and F. Jahnke, “Coulomb effects in semiconductor quantum dots,” Eur. Phys. J. B42, 231–237 (2004).
    [CrossRef]
  21. E. Peter, J. Hours, P. Senellart, A. Vasanelli, A. Cavanna, J. Bloch, and J. M. Gérard, “Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots,” Phys. Rev. B69, 041307 (2004).
    [CrossRef]
  22. J. Y. Bigot, M. T. Portella, R. W. Schoenlein, J. E. Cunningham, and C. V. Shank, “Two-dimensional carrier-carrier screening in a quantum well,” Phys. Rev. Lett.67, 636–639 (1991).
    [CrossRef] [PubMed]
  23. M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Sol. (c)3, 2393–2396 (2006).
    [CrossRef]
  24. T. Tawara, I. Suemune, and H. Kumano, “Strong coupling of CdS quantum dots to confined photonic modes in ZnSe-based microcavities,” Physica E13, 403–407 (2002).
    [CrossRef]
  25. G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A50, 1675–1680 (1994).
    [CrossRef] [PubMed]
  26. G. Björk, A. Karlsson, and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
    [CrossRef]
  27. Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A46, 5944–5954 (1992).
    [CrossRef] [PubMed]
  28. A. Auffèves, D. Gerace, J. M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B81, 245419 (2010).
    [CrossRef]

2011 (1)

2010 (4)

S. Ritter, P. Gartner, C. Gies, and F. Jahnke, “Emission properties and photon statistics of a single quantum dot laser,” Opt. Express18, 9909–9921 (2010).
[CrossRef] [PubMed]

A. Auffèves, D. Gerace, J. M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B81, 245419 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6, 279–283 (2010).
[CrossRef]

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010).
[CrossRef]

2009 (3)

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2009).
[CrossRef] [PubMed]

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett.103, 087405 (2009).
[CrossRef] [PubMed]

P. Yao, P. Pathak, V. Rao, and S. Hughes, “Theory and design of chip-based quantum light sources using planar photonic crystals,” Proc. SPIE7211, 72110B (2009).
[CrossRef]

2008 (2)

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett.93, 061104 (2008).
[CrossRef]

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett.101, 083601 (2008).
[CrossRef] [PubMed]

2007 (2)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett.98, 117401 (2007).
[CrossRef] [PubMed]

2006 (2)

M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Sol. (c)3, 2393–2396 (2006).
[CrossRef]

S. Noda, “Seeking the Ultimate Nanolaser,” Science314, 260–261 (2006).
[CrossRef] [PubMed]

2005 (1)

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

2004 (4)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

G. JP Reithmaier, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, and A. TL Reinecke, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

N. Baer, P. Gartner, and F. Jahnke, “Coulomb effects in semiconductor quantum dots,” Eur. Phys. J. B42, 231–237 (2004).
[CrossRef]

E. Peter, J. Hours, P. Senellart, A. Vasanelli, A. Cavanna, J. Bloch, and J. M. Gérard, “Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots,” Phys. Rev. B69, 041307 (2004).
[CrossRef]

2002 (3)

H. Mabuchi and A. Doherty, “Cavity quantum electrodynamics: Coherence in context,” Science298, 1372–1377 (2002).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vuckovic, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature419, 594–597 (2002).
[CrossRef] [PubMed]

T. Tawara, I. Suemune, and H. Kumano, “Strong coupling of CdS quantum dots to confined photonic modes in ZnSe-based microcavities,” Physica E13, 403–407 (2002).
[CrossRef]

2001 (1)

E. Moreau, I. Robert, J. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

1999 (1)

M. Rontani, F. Rossi, F. Manghi, and E. Molinari, “Coulomb correlation effects in semiconductor quantum dots: The role of dimensionality,” Phys. Rev. B59, 10165–10175 (1999).
[CrossRef]

1994 (1)

G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A50, 1675–1680 (1994).
[CrossRef] [PubMed]

1992 (1)

Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A46, 5944–5954 (1992).
[CrossRef] [PubMed]

1991 (2)

J. Y. Bigot, M. T. Portella, R. W. Schoenlein, J. E. Cunningham, and C. V. Shank, “Two-dimensional carrier-carrier screening in a quantum well,” Phys. Rev. Lett.67, 636–639 (1991).
[CrossRef] [PubMed]

G. Björk, A. Karlsson, and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
[CrossRef]

Abram, I.

E. Moreau, I. Robert, J. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

Andreani, L. C.

A. Auffèves, D. Gerace, J. M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B81, 245419 (2010).
[CrossRef]

Arakawa, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6, 279–283 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2009).
[CrossRef] [PubMed]

Atature, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Auffèves, A.

A. Auffèves, D. Gerace, J. M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B81, 245419 (2010).
[CrossRef]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Baer, N.

N. Baer, P. Gartner, and F. Jahnke, “Coulomb effects in semiconductor quantum dots,” Eur. Phys. J. B42, 231–237 (2004).
[CrossRef]

Bigot, J. Y.

J. Y. Bigot, M. T. Portella, R. W. Schoenlein, J. E. Cunningham, and C. V. Shank, “Two-dimensional carrier-carrier screening in a quantum well,” Phys. Rev. Lett.67, 636–639 (1991).
[CrossRef] [PubMed]

Björk, G.

G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A50, 1675–1680 (1994).
[CrossRef] [PubMed]

G. Björk, A. Karlsson, and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
[CrossRef]

Bloch, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

E. Peter, J. Hours, P. Senellart, A. Vasanelli, A. Cavanna, J. Bloch, and J. M. Gérard, “Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots,” Phys. Rev. B69, 041307 (2004).
[CrossRef]

Böhm, G.

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett.103, 087405 (2009).
[CrossRef] [PubMed]

Cao, H.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett.98, 117401 (2007).
[CrossRef] [PubMed]

Cavanna, A.

E. Peter, J. Hours, P. Senellart, A. Vasanelli, A. Cavanna, J. Bloch, and J. M. Gérard, “Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots,” Phys. Rev. B69, 041307 (2004).
[CrossRef]

Cunningham, J. E.

J. Y. Bigot, M. T. Portella, R. W. Schoenlein, J. E. Cunningham, and C. V. Shank, “Two-dimensional carrier-carrier screening in a quantum well,” Phys. Rev. Lett.67, 636–639 (1991).
[CrossRef] [PubMed]

del Valle, E.

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett.101, 083601 (2008).
[CrossRef] [PubMed]

Deppe, D.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Doherty, A.

H. Mabuchi and A. Doherty, “Cavity quantum electrodynamics: Coherence in context,” Science298, 1372–1377 (2002).
[CrossRef] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Falt, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Fang, W.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett.98, 117401 (2007).
[CrossRef] [PubMed]

Fattal, D.

C. Santori, D. Fattal, J. Vuckovic, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature419, 594–597 (2002).
[CrossRef] [PubMed]

Finley, J. J.

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett.103, 087405 (2009).
[CrossRef] [PubMed]

Florian, M.

Forchel, A.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010).
[CrossRef]

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett.93, 061104 (2008).
[CrossRef]

Franeck, P.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010).
[CrossRef]

Gartner, P.

C. Gies, M. Florian, P. Gartner, and F. Jahnke, “The single quantum dot-laser: lasing and strong coupling in the high-excitation regime,” Opt. Express19, 14370–14388 (2011).
[CrossRef] [PubMed]

S. Ritter, P. Gartner, C. Gies, and F. Jahnke, “Emission properties and photon statistics of a single quantum dot laser,” Opt. Express18, 9909–9921 (2010).
[CrossRef] [PubMed]

M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Sol. (c)3, 2393–2396 (2006).
[CrossRef]

N. Baer, P. Gartner, and F. Jahnke, “Coulomb effects in semiconductor quantum dots,” Eur. Phys. J. B42, 231–237 (2004).
[CrossRef]

Gerace, D.

A. Auffèves, D. Gerace, J. M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B81, 245419 (2010).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Gérard, J.

E. Moreau, I. Robert, J. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

Gérard, J. M.

A. Auffèves, D. Gerace, J. M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B81, 245419 (2010).
[CrossRef]

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

E. Peter, J. Hours, P. Senellart, A. Vasanelli, A. Cavanna, J. Bloch, and J. M. Gérard, “Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots,” Phys. Rev. B69, 041307 (2004).
[CrossRef]

Gibbs, H.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Gies, C.

Götzinger, S.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett.98, 117401 (2007).
[CrossRef] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Hauke, N.

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett.103, 087405 (2009).
[CrossRef] [PubMed]

Heindel, T.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010).
[CrossRef]

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett.93, 061104 (2008).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Hofbauer, F.

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett.103, 087405 (2009).
[CrossRef] [PubMed]

Höfling, S.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010).
[CrossRef]

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett.93, 061104 (2008).
[CrossRef]

Hofmann, C.

G. JP Reithmaier, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, and A. TL Reinecke, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Hours, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

E. Peter, J. Hours, P. Senellart, A. Vasanelli, A. Cavanna, J. Bloch, and J. M. Gérard, “Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots,” Phys. Rev. B69, 041307 (2004).
[CrossRef]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Hughes, S.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010).
[CrossRef]

P. Yao, P. Pathak, V. Rao, and S. Hughes, “Theory and design of chip-based quantum light sources using planar photonic crystals,” Proc. SPIE7211, 72110B (2009).
[CrossRef]

Illes, E.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010).
[CrossRef]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Iwamoto, S.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6, 279–283 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2009).
[CrossRef] [PubMed]

Jahnke, F.

C. Gies, M. Florian, P. Gartner, and F. Jahnke, “The single quantum dot-laser: lasing and strong coupling in the high-excitation regime,” Opt. Express19, 14370–14388 (2011).
[CrossRef] [PubMed]

S. Ritter, P. Gartner, C. Gies, and F. Jahnke, “Emission properties and photon statistics of a single quantum dot laser,” Opt. Express18, 9909–9921 (2010).
[CrossRef] [PubMed]

M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Sol. (c)3, 2393–2396 (2006).
[CrossRef]

N. Baer, P. Gartner, and F. Jahnke, “Coulomb effects in semiconductor quantum dots,” Eur. Phys. J. B42, 231–237 (2004).
[CrossRef]

Kaniber, M.

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett.103, 087405 (2009).
[CrossRef] [PubMed]

Karlsson, A.

G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A50, 1675–1680 (1994).
[CrossRef] [PubMed]

G. Björk, A. Karlsson, and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
[CrossRef]

Keldysh, L.

G. JP Reithmaier, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, and A. TL Reinecke, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Kistner, C.

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett.93, 061104 (2008).
[CrossRef]

Kuhn, S.

G. JP Reithmaier, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, and A. TL Reinecke, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V.

G. JP Reithmaier, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, and A. TL Reinecke, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Kumagai, N.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6, 279–283 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2009).
[CrossRef] [PubMed]

Kumano, H.

T. Tawara, I. Suemune, and H. Kumano, “Strong coupling of CdS quantum dots to confined photonic modes in ZnSe-based microcavities,” Physica E13, 403–407 (2002).
[CrossRef]

Laucht, A.

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett.103, 087405 (2009).
[CrossRef] [PubMed]

Laussy, F. P.

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett.101, 083601 (2008).
[CrossRef] [PubMed]

Lemaître, A.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

Löffler, A.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010).
[CrossRef]

G. JP Reithmaier, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, and A. TL Reinecke, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Lorke, M.

M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Sol. (c)3, 2393–2396 (2006).
[CrossRef]

Mabuchi, H.

H. Mabuchi and A. Doherty, “Cavity quantum electrodynamics: Coherence in context,” Science298, 1372–1377 (2002).
[CrossRef] [PubMed]

Manghi, F.

M. Rontani, F. Rossi, F. Manghi, and E. Molinari, “Coulomb correlation effects in semiconductor quantum dots: The role of dimensionality,” Phys. Rev. B59, 10165–10175 (1999).
[CrossRef]

Manin, L.

E. Moreau, I. Robert, J. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

Martrou, D.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

Molinari, E.

M. Rontani, F. Rossi, F. Manghi, and E. Molinari, “Coulomb correlation effects in semiconductor quantum dots: The role of dimensionality,” Phys. Rev. B59, 10165–10175 (1999).
[CrossRef]

Moreau, E.

E. Moreau, I. Robert, J. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

Mu, Y.

Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A46, 5944–5954 (1992).
[CrossRef] [PubMed]

Münch, S.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010).
[CrossRef]

Nielsen, T. R.

M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Sol. (c)3, 2393–2396 (2006).
[CrossRef]

Noda, S.

S. Noda, “Seeking the Ultimate Nanolaser,” Science314, 260–261 (2006).
[CrossRef] [PubMed]

Nomura, M.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6, 279–283 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2009).
[CrossRef] [PubMed]

Ota, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6, 279–283 (2010).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2009).
[CrossRef] [PubMed]

Pathak, P.

P. Yao, P. Pathak, V. Rao, and S. Hughes, “Theory and design of chip-based quantum light sources using planar photonic crystals,” Proc. SPIE7211, 72110B (2009).
[CrossRef]

Pathak, P. K.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010).
[CrossRef]

Peter, E.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

E. Peter, J. Hours, P. Senellart, A. Vasanelli, A. Cavanna, J. Bloch, and J. M. Gérard, “Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots,” Phys. Rev. B69, 041307 (2004).
[CrossRef]

Poizat, J.-P.

A. Auffèves, D. Gerace, J. M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B81, 245419 (2010).
[CrossRef]

Portella, M. T.

J. Y. Bigot, M. T. Portella, R. W. Schoenlein, J. E. Cunningham, and C. V. Shank, “Two-dimensional carrier-carrier screening in a quantum well,” Phys. Rev. Lett.67, 636–639 (1991).
[CrossRef] [PubMed]

Rahimi-Iman, A.

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett.93, 061104 (2008).
[CrossRef]

Rao, V.

P. Yao, P. Pathak, V. Rao, and S. Hughes, “Theory and design of chip-based quantum light sources using planar photonic crystals,” Proc. SPIE7211, 72110B (2009).
[CrossRef]

Reinecke, A. TL

G. JP Reithmaier, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, and A. TL Reinecke, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Reithmaier, G. JP

G. JP Reithmaier, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, and A. TL Reinecke, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010).
[CrossRef]

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett.93, 061104 (2008).
[CrossRef]

G. JP Reithmaier, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, and A. TL Reinecke, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Ritter, S.

Robert, I.

E. Moreau, I. Robert, J. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

Rontani, M.

M. Rontani, F. Rossi, F. Manghi, and E. Molinari, “Coulomb correlation effects in semiconductor quantum dots: The role of dimensionality,” Phys. Rev. B59, 10165–10175 (1999).
[CrossRef]

Rossi, F.

M. Rontani, F. Rossi, F. Manghi, and E. Molinari, “Coulomb correlation effects in semiconductor quantum dots: The role of dimensionality,” Phys. Rev. B59, 10165–10175 (1999).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Santori, C.

C. Santori, D. Fattal, J. Vuckovic, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature419, 594–597 (2002).
[CrossRef] [PubMed]

Santos, M. F.

A. Auffèves, D. Gerace, J. M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B81, 245419 (2010).
[CrossRef]

Savage, C. M.

Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A46, 5944–5954 (1992).
[CrossRef] [PubMed]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Schneider, C.

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett.93, 061104 (2008).
[CrossRef]

Schoenlein, R. W.

J. Y. Bigot, M. T. Portella, R. W. Schoenlein, J. E. Cunningham, and C. V. Shank, “Two-dimensional carrier-carrier screening in a quantum well,” Phys. Rev. Lett.67, 636–639 (1991).
[CrossRef] [PubMed]

Seebeck, J.

M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Sol. (c)3, 2393–2396 (2006).
[CrossRef]

Senellart, P.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

E. Peter, J. Hours, P. Senellart, A. Vasanelli, A. Cavanna, J. Bloch, and J. M. Gérard, “Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots,” Phys. Rev. B69, 041307 (2004).
[CrossRef]

Shank, C. V.

J. Y. Bigot, M. T. Portella, R. W. Schoenlein, J. E. Cunningham, and C. V. Shank, “Two-dimensional carrier-carrier screening in a quantum well,” Phys. Rev. Lett.67, 636–639 (1991).
[CrossRef] [PubMed]

Shchekin, O.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Solomon, G.

C. Santori, D. Fattal, J. Vuckovic, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature419, 594–597 (2002).
[CrossRef] [PubMed]

Solomon, G. S.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett.98, 117401 (2007).
[CrossRef] [PubMed]

Suemune, I.

T. Tawara, I. Suemune, and H. Kumano, “Strong coupling of CdS quantum dots to confined photonic modes in ZnSe-based microcavities,” Physica E13, 403–407 (2002).
[CrossRef]

Tawara, T.

T. Tawara, I. Suemune, and H. Kumano, “Strong coupling of CdS quantum dots to confined photonic modes in ZnSe-based microcavities,” Physica E13, 403–407 (2002).
[CrossRef]

Tejedor, C.

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett.101, 083601 (2008).
[CrossRef] [PubMed]

Thierry-Mieg, V.

E. Moreau, I. Robert, J. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

Vasanelli, A.

E. Peter, J. Hours, P. Senellart, A. Vasanelli, A. Cavanna, J. Bloch, and J. M. Gérard, “Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots,” Phys. Rev. B69, 041307 (2004).
[CrossRef]

Villas-Bôas, J. M.

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett.103, 087405 (2009).
[CrossRef] [PubMed]

Vuckovic, J.

C. Santori, D. Fattal, J. Vuckovic, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature419, 594–597 (2002).
[CrossRef] [PubMed]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Worschech, L.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010).
[CrossRef]

Xie, Z. G.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett.98, 117401 (2007).
[CrossRef] [PubMed]

Yamamoto, Y.

C. Santori, D. Fattal, J. Vuckovic, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature419, 594–597 (2002).
[CrossRef] [PubMed]

G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A50, 1675–1680 (1994).
[CrossRef] [PubMed]

G. Björk, A. Karlsson, and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
[CrossRef]

Yao, P.

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010).
[CrossRef]

P. Yao, P. Pathak, V. Rao, and S. Hughes, “Theory and design of chip-based quantum light sources using planar photonic crystals,” Proc. SPIE7211, 72110B (2009).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

E. Moreau, I. Robert, J. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett.93, 061104 (2008).
[CrossRef]

Eur. Phys. J. B (1)

N. Baer, P. Gartner, and F. Jahnke, “Coulomb effects in semiconductor quantum dots,” Eur. Phys. J. B42, 231–237 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Björk, A. Karlsson, and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
[CrossRef]

Nat. Phys. (1)

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6, 279–283 (2010).
[CrossRef]

Nature (4)

C. Santori, D. Fattal, J. Vuckovic, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature419, 594–597 (2002).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

G. JP Reithmaier, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, and A. TL Reinecke, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. A (2)

Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A46, 5944–5954 (1992).
[CrossRef] [PubMed]

G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A50, 1675–1680 (1994).
[CrossRef] [PubMed]

Phys. Rev. B (4)

M. Rontani, F. Rossi, F. Manghi, and E. Molinari, “Coulomb correlation effects in semiconductor quantum dots: The role of dimensionality,” Phys. Rev. B59, 10165–10175 (1999).
[CrossRef]

E. Peter, J. Hours, P. Senellart, A. Vasanelli, A. Cavanna, J. Bloch, and J. M. Gérard, “Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots,” Phys. Rev. B69, 041307 (2004).
[CrossRef]

A. Auffèves, D. Gerace, J. M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B81, 245419 (2010).
[CrossRef]

P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010).
[CrossRef]

Phys. Rev. Lett. (5)

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett.101, 083601 (2008).
[CrossRef] [PubMed]

A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett.103, 087405 (2009).
[CrossRef] [PubMed]

J. Y. Bigot, M. T. Portella, R. W. Schoenlein, J. E. Cunningham, and C. V. Shank, “Two-dimensional carrier-carrier screening in a quantum well,” Phys. Rev. Lett.67, 636–639 (1991).
[CrossRef] [PubMed]

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett.98, 117401 (2007).
[CrossRef] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

Phys. Stat. Sol. (c) (1)

M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Sol. (c)3, 2393–2396 (2006).
[CrossRef]

Physica E (1)

T. Tawara, I. Suemune, and H. Kumano, “Strong coupling of CdS quantum dots to confined photonic modes in ZnSe-based microcavities,” Physica E13, 403–407 (2002).
[CrossRef]

Proc. SPIE (1)

P. Yao, P. Pathak, V. Rao, and S. Hughes, “Theory and design of chip-based quantum light sources using planar photonic crystals,” Proc. SPIE7211, 72110B (2009).
[CrossRef]

Science (2)

S. Noda, “Seeking the Ultimate Nanolaser,” Science314, 260–261 (2006).
[CrossRef] [PubMed]

H. Mabuchi and A. Doherty, “Cavity quantum electrodynamics: Coherence in context,” Science298, 1372–1377 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of semiconductor QD-microcavity system with QD’s energy levels.

Fig. 2
Fig. 2

Photon emission spectra at selected pump rates. (a) P = 0.1, 0.15, 0.3, 1/ps from bottom to up for resonant case and (b–d) for non-resonant case at Δ = 2, 4, 6meV. For all curves, the decay rates of cavity is κ = 0.1/ps, the light-matter coupling constant g = 0.9/ps, the spontaneous emission rates γ23 = γ14 = 0.01/ps, and the pure dephasing rate is Γpd = 0.035 meV. And Δω = ωωc in all the plots.

Fig. 3
Fig. 3

(a) Steady-state mean photon number 〈n〉 vs. pump rate P. (b) Second-order photon correlation function g(2)(0) versus pump rate P. (c) Normalized second-order correlation function g(2)(τ) versus the delay time τ at P = 1000/ps. The inset is for Esp = 3.3 meV, γ12 = γ34 = 0.05 meV in our model without considering the pure dephasing processes. (d) The laser threshold versus detuning between QD and cavity, the inset is the enlarged plot of the laser threshold where the red rectangle dot indicates the optimum value of laser threshold. For Fig. 3(a–c): the black lines correspond to resonant case; for the green lines, Δ = 2meV; in comparison, Δ = 1meV (Δ = −1meV) is used for the solid (dashed) purple lines and Δ = 5meV for the blue lines. Other parameters are the same as Fig. 2.

Fig. 4
Fig. 4

Photon emission spectrum for selected pump rates. (a) P = 0.1/ps (semi-logarithmic plot). (b) P = 500/ps (linear plot). From bottom-to-top s-exciton-cavity detuning is chosen as Δ = (−5, −2, −1, 0, 1, 2, 5)meV in both subfigure. Lines are vertically displaced. The inset in (a) is the simulation results of Fig. 3(b) in [7] when Δλ = −0.03nm, the same parameters as the experiment are used in our model except the coupling constant g = 0.3meV. For all curves, the other parameters are the same as Fig. 2.

Fig. 5
Fig. 5

(a) Steady-state mean photon number 〈n〉 vs. pump rate P. (b) Second-order photon correlation function g(2)(0) versus pump rate P. The black solid lines correspond to Esp = 0meV. For the red dashed lines Esp = 2.5 meV. In comparison, Esp = 5 meV is used for the blue dash-dotted lines. For all curves, the other parameters are set as Fig. 2 except Δ = 0.

Fig. 6
Fig. 6

(a) Steady-state mean photon number 〈n〉 vs. pump rate P. The inset is the mean photon number at steady value versus detuning, and the red rectangle dot indicates the maximum value at Δ = 4meV. (b) Second-order photon correlation function g(2)(0) versus pump rate P. The black lines correspond to resonant case; the solid/dashed purple lines is for Δ = 1meV/ − 1meV, the green lines Δ = 2meV, the red lines Δ = 4meV and the blue lines Δ = 5meV. Other parameters are the same as Fig. 2 except that γ12 = γ34 = 1 meV, Esp = 2 meV.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d ρ d t = i h ¯ [ H s , ρ ] + ( ρ ) ,
H s = h ¯ g [ b a 2 a 3 exp ( i Δ t ) + b a 3 a 2 exp ( i Δ t ) ] E s p [ n 3 n 4 + ( 1 n 1 ) ( 1 n 2 ) ] ,
( ρ ) = ( i , j ) γ i j 2 ( 2 a i a j ρ a j a i a j a i a i a j ρ ρ a j a i a i a j ) + κ 2 ( 2 b ρ b b b ρ ρ b b ) + Γ p d 2 ( 2 a 3 a 3 ρ a 3 a 3 a 3 a 3 a 3 a 3 ρ ρ a 3 a 3 a 3 a 3 ) + Γ p d 2 ( 2 a 2 a 2 ρ a 2 a 2 a 2 a 2 a 2 a 2 ρ ρ a 2 a 2 a 2 a 2 ) ,

Metrics