Abstract

A high-sensitivity ultrasonic sensing system is proposed and demonstrated. In this system, a phase-shifted fiber Bragg grating (PS-FBG) is used as a sensor to achieve broadband and highly sensitive detection. The PS-FBG modulates the output of a tunable laser to detect the ultrasonic strain directly. Balanced photo-detector (BPD) is used for eliminating the DC component and further amplifying the AC component in the detected signal. Another major function of the BPD is to reject laser intensity noise. As a result, the minimum detectable strain is limited by the BPD’s noise and laser frequency noise. The sensitivity of the system is 9 nε/Hz1/2. Because of its high sensitivity, this system has the potential to be used in acousto-ultrasonic testing without amplifying the input signal and in practical acoustic emission detection.

© 2012 OSA

Full Article  |  PDF Article
Related Articles
Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale
Opt. Express 13(7) 2377-2384 (2005)

Fiber optic liquid leak detection technique with an ultrasonic actuator and a fiber Bragg grating

Jung-Ryul Lee and Hiroshi Tsuda
Opt. Lett. 30(24) 3293-3295 (2005)

References

  • View by:
  • |
  • |
  • |

  1. C. U. Grosse and M. Ohtsu, Acoustic Emission Testing: Basics for Research—Applications in Civil Engineering, (Springer, 2008).
  2. G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
    [Crossref]
  3. G. Wild, S. Hinckley, and P. V. Jansz, “A transmit reflect detection system for fiber Bragg grating photonic sensors,” Proc. SPIE 6801, 68010N, 68010N-9 (2007).
    [Crossref]
  4. Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
    [Crossref]
  5. I. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).
    [Crossref]
  6. Q. Wu and Y. Okabe, “Ultrasonic sensor employing two cascaded phase-shifted fiber Bragg gratings suitable for multiplexing,” Opt. Lett. 37(16), 3336–3338 (2012).
    [Crossref]
  7. H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel) 10(12), 11248–11258 (2010).
    [Crossref] [PubMed]
  8. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
    [Crossref] [PubMed]
  9. A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
    [Crossref] [PubMed]
  10. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Wideband optical sensing using pulse interferometry,” Opt. Express 20(17), 19016–19029 (2012).
    [Crossref] [PubMed]
  11. J. H. Chow, I. C. Littler, D. E. McClelland, and M. B. Gray, “Laser frequency-noise-limited ultrahigh resolution remote fiber sensing,” Opt. Express 14(11), 4617–4624 (2006).
    [Crossref] [PubMed]
  12. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a pi-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express 16(3), 1945–1950 (2008).
    [Crossref] [PubMed]
  13. S. Avino, J. A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, and H. P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express 19(25), 25057–25065 (2011).
    [Crossref] [PubMed]
  14. http://assets.newport.com/webDocuments-EN/images/15192.pdf
  15. A. Arie, B. Lissak, and M. Tur, “Static fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol. 17(10), 1849–1855 (1999).
    [Crossref]
  16. M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory 47(7), 1282–1288 (1999).
    [Crossref]
  17. A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE 5814, 39–50 (2005).
    [Crossref]
  18. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
    [Crossref]
  19. W. Jin, “Investigation of interferometric noise in fiber-optic Bragg grating sensors by use of tunable laser sources,” Appl. Opt. 37(13), 2517–2525 (1998).
    [Crossref] [PubMed]

2012 (2)

2011 (2)

2010 (2)

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel) 10(12), 11248–11258 (2010).
[Crossref] [PubMed]

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
[Crossref]

2008 (2)

2007 (1)

G. Wild, S. Hinckley, and P. V. Jansz, “A transmit reflect detection system for fiber Bragg grating photonic sensors,” Proc. SPIE 6801, 68010N, 68010N-9 (2007).
[Crossref]

2006 (1)

2005 (2)

A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE 5814, 39–50 (2005).
[Crossref]

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[Crossref] [PubMed]

2001 (1)

I. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).
[Crossref]

1999 (2)

A. Arie, B. Lissak, and M. Tur, “Static fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol. 17(10), 1849–1855 (1999).
[Crossref]

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory 47(7), 1282–1288 (1999).
[Crossref]

1998 (1)

1997 (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]

Arie, A.

Avino, S.

Barnes, J. A.

Becker, D.

A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE 5814, 39–50 (2005).
[Crossref]

Bernini, R.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[Crossref] [PubMed]

Chau, T.

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory 47(7), 1282–1288 (1999).
[Crossref]

Cho, A. Y.

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory 47(7), 1282–1288 (1999).
[Crossref]

Chow, J. H.

Cui, H. L.

I. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).
[Crossref]

Cusano, A.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[Crossref] [PubMed]

Fujibayashi, K.

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
[Crossref]

Gagliardi, G.

Galzerano, G.

Gatti, D.

Giordano, M.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[Crossref] [PubMed]

Gray, M. B.

Gu, X.

Gutstein, D.

Hinckley, S.

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[Crossref]

G. Wild, S. Hinckley, and P. V. Jansz, “A transmit reflect detection system for fiber Bragg grating photonic sensors,” Proc. SPIE 6801, 68010N, 68010N-9 (2007).
[Crossref]

Islam, M. S.

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory 47(7), 1282–1288 (1999).
[Crossref]

Itoh, T.

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory 47(7), 1282–1288 (1999).
[Crossref]

Janner, D.

Jansz, P. V.

G. Wild, S. Hinckley, and P. V. Jansz, “A transmit reflect detection system for fiber Bragg grating photonic sensors,” Proc. SPIE 6801, 68010N, 68010N-9 (2007).
[Crossref]

Jin, W.

Joshi, A.

A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE 5814, 39–50 (2005).
[Crossref]

Kumakura, K.

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel) 10(12), 11248–11258 (2010).
[Crossref] [PubMed]

Laporta, P.

Lissak, B.

Littler, I. C.

Longhi, S.

Loock, H. P.

Mathai, S.

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory 47(7), 1282–1288 (1999).
[Crossref]

McClelland, D. E.

Mester, J. R.

Minardo, A.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[Crossref] [PubMed]

Mohr, D.

A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE 5814, 39–50 (2005).
[Crossref]

Nicholaou, C.

Ntziachristos, V.

Ogihara, S.

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel) 10(12), 11248–11258 (2010).
[Crossref] [PubMed]

Ogisu, T.

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
[Crossref]

Okabe, Y.

Q. Wu and Y. Okabe, “Ultrasonic sensor employing two cascaded phase-shifted fiber Bragg gratings suitable for multiplexing,” Opt. Lett. 37(16), 3336–3338 (2012).
[Crossref]

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
[Crossref]

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]

Perez, I.

I. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).
[Crossref]

Razansky, D.

Rosenthal, A.

Shimazaki, M.

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
[Crossref]

Sivco, D. L.

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory 47(7), 1282–1288 (1999).
[Crossref]

Soejima, H.

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
[Crossref]

Tsuda, H.

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel) 10(12), 11248–11258 (2010).
[Crossref] [PubMed]

Tur, M.

Udd, E.

I. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).
[Crossref]

Wang, X.

A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE 5814, 39–50 (2005).
[Crossref]

Wild, G.

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[Crossref]

G. Wild, S. Hinckley, and P. V. Jansz, “A transmit reflect detection system for fiber Bragg grating photonic sensors,” Proc. SPIE 6801, 68010N, 68010N-9 (2007).
[Crossref]

Wree, C.

A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE 5814, 39–50 (2005).
[Crossref]

Wu, M. C.

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory 47(7), 1282–1288 (1999).
[Crossref]

Wu, Q.

Zeni, L.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[Crossref] [PubMed]

Appl. Opt. (1)

IEEE Sens. J. (1)

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[Crossref]

IEEE Trans. Microw. Theory (1)

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory 47(7), 1282–1288 (1999).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 304–312 (2005).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (3)

A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE 5814, 39–50 (2005).
[Crossref]

G. Wild, S. Hinckley, and P. V. Jansz, “A transmit reflect detection system for fiber Bragg grating photonic sensors,” Proc. SPIE 6801, 68010N, 68010N-9 (2007).
[Crossref]

I. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE 4328, 209–215 (2001).
[Crossref]

Rev. Sci. Instrum. (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]

Sensors (Basel) (1)

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel) 10(12), 11248–11258 (2010).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct. 19(11), 115013 (2010).
[Crossref]

Other (2)

C. U. Grosse and M. Ohtsu, Acoustic Emission Testing: Basics for Research—Applications in Civil Engineering, (Springer, 2008).

http://assets.newport.com/webDocuments-EN/images/15192.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Setup and principle of the sensing system. (a) Schematic diagram of the sensing system: O-scope, oscilloscope; Amp, amplifier; FG, function generator; and P1/P2, port 1/port 2. (b) Principle of the sensing system.

Fig. 2
Fig. 2

Spectra of the FBGs are measured by sweeping the TLS. (a) The sharp peak in the spectrum of PS-FBG has a steep linear region. The inset shows the complete spectrum of the PS-FBG. (b) The spectrum of normal FBG has a linear region with a gentler slope than that of the PS-FBG.

Fig. 3
Fig. 3

The noise levels under the different experimental conditions. The BPD has the ability to reject the laser noise, especially when the input laser power in two ports of the BPD are balanced. The noise rejection performance achieves an effective noise level that is approximately the same as the noise in the BPD without laser input.

Fig. 4
Fig. 4

Temporal responses (a) and PSDs (b) obtained from three different sensing systems. Curve 1 is the signal obtained by the normal FBG sensing system after averaging over 1024 samples, and the inset in Fig. 4(a) is the detected signal in the same condition but without averaging. Curve 2 is the signal obtained by the PS-FBG sensing system. Curve 3 is the signal obtained by our novel PS-FBG balanced sensing system.

Fig. 5
Fig. 5

By changing the input laser power to three different levels, the detected signal is shown to be proportional to the laser power, but the increase of the noise level is much smaller than the increase of the laser power. The best SNR achieved in this experiment was 30 dB, which was when an input laser power of 3 dBm was used.

Fig. 6
Fig. 6

Due to the high sensitivity the system achieved, the generated ultrasonic waves without the need for an amplifier could be detected. In the experimental condition indicated by the blue line, the minimum detectable strain was generated by a 0.1-V signal, and the corresponding minimum detected sensitivity in this system is 9 nε/Hz1/2.

Fig. 7
Fig. 7

Detected AE signal generated by the pencil lead break, measured at a distance of 1 m. (a) Detected wave without a filter presents the sensitivity to both high and low frequencies. (b) Detected wave after the high-pass filter, showing the S0 and A0 modes of the Lamb wave clearly.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

V S =Δ λ S G R D Pg
V S =2Δ λ S G R D Pg
V N =( V IN + V FRE + V COM + V PD )g
V N =( V FRE + V PD )g
Δ λ S =aε
V N = V S
ε min = V N 2aG R D Pg = V FRE + V PD 2aG R D P
S ε ( f )= S V N ( f ) 2aG R D Pg [ε/ Hz 1/2 ]

Metrics