Abstract

A new type of multi-layer metamaterial (MM) absorber is represented in this paper, which behave as a dielectric slab in transmission band and act as an absorber in another lower band. The equivalent circuit model of each layer in this MM absorber has been established. The transmission line (TL) model is introduced to analysis the mechanism of electromagnetic wave traveling through this MM absorber. Both theoretical and experimental results indicate this MM absorber has a transmission band at 21GHz and an absorptive band from 5GHz to 13GHz. A good match of TL model results and measurement results verified the validity of TL model in analyzing and optimizing the performances of this kind of absorber.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
    [CrossRef] [PubMed]
  2. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
    [CrossRef] [PubMed]
  3. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
    [CrossRef]
  4. Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express17(22), 20256–20265 (2009).
    [CrossRef] [PubMed]
  5. C. G. Hu, X. Li, Q. Feng, X. N. Chen, and X. G. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express18(7), 6598–6603 (2010).
    [CrossRef] [PubMed]
  6. F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag.58(5), 1551–1558 (2010).
    [CrossRef]
  7. F. Costa, S. Genovesi, and A. Monorchio, “On the bandwidth of high-impedance frequency Selective surfaces,” IEEE Antennas Wirel. Propag. Lett.8, 1341–1344 (2009).
    [CrossRef]
  8. L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Express20(4), 4675–4680 (2012).
    [CrossRef] [PubMed]
  9. F. Costa and A. Monorchio, “A Frequency Selective Radome With Wideband Absorbing Properties,” IEEE Trans. Antenn. Propag.60(6), 2740–2747 (2012).
    [CrossRef]
  10. A. Motevasselian and B. L. G. Jonsson, “Design of a wideband absorber with a polarization sensitive transparent window,” IEEE Microw., Antennas Propaga.6(7), 747–755 (2012).
    [CrossRef]
  11. B. A. Munk, Frequency Selective Surfaces-Theory and Design (New York:Wiley, 2000).
  12. F. Costa, A. Monorchio, and S. Genovesi, “An equivalent circuit model of frequency selective surfaces embedded within dielectric layers,” IEEE Antennas Propag. Society Int.Symp., Charleston, SC, Jun. 2009.
  13. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).
  14. D. M. Pozar, Microwave Engineering (John Wiley & Sons, Inc, 2011).

2012 (3)

F. Costa and A. Monorchio, “A Frequency Selective Radome With Wideband Absorbing Properties,” IEEE Trans. Antenn. Propag.60(6), 2740–2747 (2012).
[CrossRef]

A. Motevasselian and B. L. G. Jonsson, “Design of a wideband absorber with a polarization sensitive transparent window,” IEEE Microw., Antennas Propaga.6(7), 747–755 (2012).
[CrossRef]

L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Express20(4), 4675–4680 (2012).
[CrossRef] [PubMed]

2010 (2)

C. G. Hu, X. Li, Q. Feng, X. N. Chen, and X. G. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express18(7), 6598–6603 (2010).
[CrossRef] [PubMed]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag.58(5), 1551–1558 (2010).
[CrossRef]

2009 (2)

F. Costa, S. Genovesi, and A. Monorchio, “On the bandwidth of high-impedance frequency Selective surfaces,” IEEE Antennas Wirel. Propag. Lett.8, 1341–1344 (2009).
[CrossRef]

Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express17(22), 20256–20265 (2009).
[CrossRef] [PubMed]

2008 (3)

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Averitt, R. D.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Bingham, C. M.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Chen, X. N.

Cheng, H. F.

Costa, F.

F. Costa and A. Monorchio, “A Frequency Selective Radome With Wideband Absorbing Properties,” IEEE Trans. Antenn. Propag.60(6), 2740–2747 (2012).
[CrossRef]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag.58(5), 1551–1558 (2010).
[CrossRef]

F. Costa, S. Genovesi, and A. Monorchio, “On the bandwidth of high-impedance frequency Selective surfaces,” IEEE Antennas Wirel. Propag. Lett.8, 1341–1344 (2009).
[CrossRef]

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Feng, Q.

Genovesi, S.

F. Costa, S. Genovesi, and A. Monorchio, “On the bandwidth of high-impedance frequency Selective surfaces,” IEEE Antennas Wirel. Propag. Lett.8, 1341–1344 (2009).
[CrossRef]

Hu, C. G.

Jonsson, B. L. G.

A. Motevasselian and B. L. G. Jonsson, “Design of a wideband absorber with a polarization sensitive transparent window,” IEEE Microw., Antennas Propaga.6(7), 747–755 (2012).
[CrossRef]

Landy, N. I.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Li, X.

Li, Y. X.

Liu, Y. L.

Luo, X. G.

Manara, G.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag.58(5), 1551–1558 (2010).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Monorchio, A.

F. Costa and A. Monorchio, “A Frequency Selective Radome With Wideband Absorbing Properties,” IEEE Trans. Antenn. Propag.60(6), 2740–2747 (2012).
[CrossRef]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag.58(5), 1551–1558 (2010).
[CrossRef]

F. Costa, S. Genovesi, and A. Monorchio, “On the bandwidth of high-impedance frequency Selective surfaces,” IEEE Antennas Wirel. Propag. Lett.8, 1341–1344 (2009).
[CrossRef]

Motevasselian, A.

A. Motevasselian and B. L. G. Jonsson, “Design of a wideband absorber with a polarization sensitive transparent window,” IEEE Microw., Antennas Propaga.6(7), 747–755 (2012).
[CrossRef]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Sun, L. K.

Tao, H.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Wang, J.

Wen, Q. Y.

Xie, Y. S.

Yang, Q. H.

Zhang, H. W.

Zhang, X.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Zhou, Y. J.

IEEE Antennas Wirel. Propag. Lett. (1)

F. Costa, S. Genovesi, and A. Monorchio, “On the bandwidth of high-impedance frequency Selective surfaces,” IEEE Antennas Wirel. Propag. Lett.8, 1341–1344 (2009).
[CrossRef]

IEEE Microw., Antennas Propaga. (1)

A. Motevasselian and B. L. G. Jonsson, “Design of a wideband absorber with a polarization sensitive transparent window,” IEEE Microw., Antennas Propaga.6(7), 747–755 (2012).
[CrossRef]

IEEE Trans. Antenn. Propag. (2)

F. Costa and A. Monorchio, “A Frequency Selective Radome With Wideband Absorbing Properties,” IEEE Trans. Antenn. Propag.60(6), 2740–2747 (2012).
[CrossRef]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag.58(5), 1551–1558 (2010).
[CrossRef]

Opt. Express (4)

Phys. Rev. B (1)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Other (4)

B. A. Munk, Frequency Selective Surfaces-Theory and Design (New York:Wiley, 2000).

F. Costa, A. Monorchio, and S. Genovesi, “An equivalent circuit model of frequency selective surfaces embedded within dielectric layers,” IEEE Antennas Propag. Society Int.Symp., Charleston, SC, Jun. 2009.

S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).

D. M. Pozar, Microwave Engineering (John Wiley & Sons, Inc, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic structure of a unit cell of the MM absorber with transmission window

Fig. 2
Fig. 2

Transmission line model of the MM absorber with transmission band

Fig. 3
Fig. 3

Top (a) and bottom (b) pattern of a unit cell

Fig. 4
Fig. 4

Top (a) and bottom (b) structures of the fabricated sample

Fig. 5
Fig. 5

Reflection (a) and transmission (b) coefficient curves of the fabricated sample

Fig. 6
Fig. 6

Reflection coefficient curves of the MM absorber with metallic ground

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Z Losslayer = R 1 j( 1 ω 2 L 1 C 1 ω C 1 )
Z C2 =j Z 0 2 α
Z L2 =j Z 0 2 α
α= kD π [ log D 2πsin( πq D ) + 1 2 n= ' ( 2π (2πn+ k y D) 2 ( k 2 k x 2 ) D 2 1 | n | ) ]
α = kD π [ log D 2πsin( πp 2D ) + 1 2 n= ' ( 2π (2πn+ k y D) 2 ( k 2 k x 2 ) D 2 1 | n | ) ]
[ A B C D ]=[ 1 0 1 Z Losslayer 1 ][ cos( β m d) j Z m sin( β m d) j sin( β m d) Z m cos( β m d) ][ 1 0 1 Z Metalstrips 1 ]

Metrics