Abstract

We report on newly-designed H1-type photonic crystal (PhC) nanocavities that simultaneously exhibit high Q factors, small mode volumes, and high external coupling efficiencies (η) of light radiated above the PhC membrane. Dipole modes of the H1 PhC nanocavities, which are doubly-degenerate and orthogonally-polarized in theory, are investigated both by numerical calculations and experiments. Through modifying the sizes and positions of the air-holes near to the defect cavity, a Q factor of 62,000 is achieved, accompanied with an improved η of 0.38 (assuming an objective lens with a numerical aperture of 0.65). A further increase of η to more than 0.60 is observed at the expense of slight degradation of Q factor (down to 50,000). We further experimentally confirm the increase of both Q and η, using micro-photoluminescence measurements, and demonstrate high Q factors up to 25,000: the highest value ever reported for dipole modes in H1 PhC nanocavities.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999).
    [CrossRef] [PubMed]
  2. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
    [CrossRef]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
    [CrossRef] [PubMed]
  4. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
    [CrossRef] [PubMed]
  5. A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express16, 448–455 (2008).
    [CrossRef] [PubMed]
  6. M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys.101, 073107 (2007).
    [CrossRef]
  7. H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett.83, 4294–4296 (2003).
    [CrossRef]
  8. Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett.94, 033102 (2009).
    [CrossRef]
  9. T. Stace, G. Milburn, and C. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B67, 085317 (2003).
    [CrossRef]
  10. R. Johne, N. Gippius, G. Pavlovic, D. Solnyshkov, I. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett.100, 240404 (2008).
    [CrossRef] [PubMed]
  11. M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys.11, 033022 (2009).
    [CrossRef]
  12. I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, and M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett.98, 041101 (2011).
    [CrossRef]
  13. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett.100, 121116 (2012).
    [CrossRef]
  14. A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83, 4204–4207 (1999).
    [CrossRef]
  15. R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Large optical Stark shifts in semiconductor quantum dots coupled to photonic crystal cavities,” Appl. Phys. Lett.98, 121109 (2011).
    [CrossRef]
  16. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B73, 235117 (2006).
    [CrossRef]
  17. N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B79, 041101 (2009).
    [CrossRef]
  18. N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82, 075120 (2010).
    [CrossRef]
  19. S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express18, 16064–16073 (2010).
    [CrossRef] [PubMed]
  20. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express10, 670–684 (2002).
    [CrossRef] [PubMed]
  21. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
    [CrossRef] [PubMed]
  22. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13, 1202–14 (2005).
    [CrossRef] [PubMed]
  23. J. Huh, J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Nondegenerate monopole mode of single defect two-dimensional triangular photonic band-gap cavity,” J. Appl. Phys.92, 654–659 (2002).
    [CrossRef]
  24. We add a note that, with thicker PhC slab, further increase of cavity Q more than 79,000 by the negative Δ3 has been confirmed.
  25. K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoǧlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89, 041118 (2006).
    [CrossRef]
  26. T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (∼ 1 million) of photonic crystal nanocavities,” Opt. Express14, 1996–2002 (2006).
    [CrossRef] [PubMed]

2012

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett.100, 121116 (2012).
[CrossRef]

2011

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Large optical Stark shifts in semiconductor quantum dots coupled to photonic crystal cavities,” Appl. Phys. Lett.98, 121109 (2011).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, and M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett.98, 041101 (2011).
[CrossRef]

2010

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82, 075120 (2010).
[CrossRef]

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express18, 16064–16073 (2010).
[CrossRef] [PubMed]

2009

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett.94, 033102 (2009).
[CrossRef]

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B79, 041101 (2009).
[CrossRef]

M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys.11, 033022 (2009).
[CrossRef]

2008

R. Johne, N. Gippius, G. Pavlovic, D. Solnyshkov, I. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett.100, 240404 (2008).
[CrossRef] [PubMed]

A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express16, 448–455 (2008).
[CrossRef] [PubMed]

2007

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys.101, 073107 (2007).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

2006

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B73, 235117 (2006).
[CrossRef]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoǧlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89, 041118 (2006).
[CrossRef]

T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (∼ 1 million) of photonic crystal nanocavities,” Opt. Express14, 1996–2002 (2006).
[CrossRef] [PubMed]

2005

2004

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

2003

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett.83, 4294–4296 (2003).
[CrossRef]

T. Stace, G. Milburn, and C. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B67, 085317 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

2002

J. Huh, J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Nondegenerate monopole mode of single defect two-dimensional triangular photonic band-gap cavity,” J. Appl. Phys.92, 654–659 (2002).
[CrossRef]

K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express10, 670–684 (2002).
[CrossRef] [PubMed]

1999

O. Painter, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999).
[CrossRef] [PubMed]

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83, 4204–4207 (1999).
[CrossRef]

Ahmadi, E. D.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett.100, 121116 (2012).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, and M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett.98, 041101 (2011).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13, 1202–14 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Andreani, L. C.

Arakawa, Y.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett.94, 033102 (2009).
[CrossRef]

A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express16, 448–455 (2008).
[CrossRef] [PubMed]

Asano, T.

Atature, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Awschalom, D. D.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83, 4204–4207 (1999).
[CrossRef]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoǧlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89, 041118 (2006).
[CrossRef]

Barnes, C.

T. Stace, G. Milburn, and C. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B67, 085317 (2003).
[CrossRef]

Beveratos, A.

M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys.11, 033022 (2009).
[CrossRef]

Bose, R.

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Large optical Stark shifts in semiconductor quantum dots coupled to photonic crystal cavities,” Appl. Phys. Lett.98, 121109 (2011).
[CrossRef]

Burkard, G.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83, 4204–4207 (1999).
[CrossRef]

Colman, P.

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82, 075120 (2010).
[CrossRef]

Combrié, S.

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82, 075120 (2010).
[CrossRef]

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B79, 041101 (2009).
[CrossRef]

De Rossi, A.

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82, 075120 (2010).
[CrossRef]

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B79, 041101 (2009).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

DiVincenzo, D. P.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83, 4204–4207 (1999).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Fox, A. M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett.100, 121116 (2012).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, and M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett.98, 041101 (2011).
[CrossRef]

Galli, M.

Gerace, D.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express18, 16064–16073 (2010).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Gippius, N.

R. Johne, N. Gippius, G. Pavlovic, D. Solnyshkov, I. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett.100, 240404 (2008).
[CrossRef] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoǧlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89, 041118 (2006).
[CrossRef]

Högerle, C.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoǧlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89, 041118 (2006).
[CrossRef]

Hu, E.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoǧlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89, 041118 (2006).
[CrossRef]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Hugues, M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett.100, 121116 (2012).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, and M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett.98, 041101 (2011).
[CrossRef]

Huh, J.

J. Huh, J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Nondegenerate monopole mode of single defect two-dimensional triangular photonic band-gap cavity,” J. Appl. Phys.92, 654–659 (2002).
[CrossRef]

Hwang, J.-K.

J. Huh, J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Nondegenerate monopole mode of single defect two-dimensional triangular photonic band-gap cavity,” J. Appl. Phys.92, 654–659 (2002).
[CrossRef]

Ikeda, N.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys.101, 073107 (2007).
[CrossRef]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoǧlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89, 041118 (2006).
[CrossRef]

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83, 4204–4207 (1999).
[CrossRef]

Ishida, S.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett.94, 033102 (2009).
[CrossRef]

Iwamoto, S.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett.94, 033102 (2009).
[CrossRef]

A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express16, 448–455 (2008).
[CrossRef] [PubMed]

Johne, R.

R. Johne, N. Gippius, G. Pavlovic, D. Solnyshkov, I. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett.100, 240404 (2008).
[CrossRef] [PubMed]

Karle, T.

M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys.11, 033022 (2009).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Kim, S.-H.

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B73, 235117 (2006).
[CrossRef]

Kim, S.-K.

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B73, 235117 (2006).
[CrossRef]

Kono, S.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys.101, 073107 (2007).
[CrossRef]

Krauss, T. F.

Kumagai, N.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett.94, 033102 (2009).
[CrossRef]

A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express16, 448–455 (2008).
[CrossRef] [PubMed]

Larqué, M.

M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys.11, 033022 (2009).
[CrossRef]

Lee, Y.-H.

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B73, 235117 (2006).
[CrossRef]

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett.83, 4294–4296 (2003).
[CrossRef]

J. Huh, J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Nondegenerate monopole mode of single defect two-dimensional triangular photonic band-gap cavity,” J. Appl. Phys.92, 654–659 (2002).
[CrossRef]

Loss, D.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83, 4204–4207 (1999).
[CrossRef]

Luxmoore, B. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett.100, 121116 (2012).
[CrossRef]

Luxmoore, I. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett.100, 121116 (2012).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, and M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett.98, 041101 (2011).
[CrossRef]

Malpuech, G.

R. Johne, N. Gippius, G. Pavlovic, D. Solnyshkov, I. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett.100, 240404 (2008).
[CrossRef] [PubMed]

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

Mei, T.

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82, 075120 (2010).
[CrossRef]

Milburn, G.

T. Stace, G. Milburn, and C. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B67, 085317 (2003).
[CrossRef]

Noda, S.

Nomura, M.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett.94, 033102 (2009).
[CrossRef]

A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express16, 448–455 (2008).
[CrossRef] [PubMed]

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett.83, 4294–4296 (2003).
[CrossRef]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

O’Faolain, L.

Ohkouchi, S.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys.101, 073107 (2007).
[CrossRef]

Ota, Y.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett.94, 033102 (2009).
[CrossRef]

Painter, O.

Pavlovic, G.

R. Johne, N. Gippius, G. Pavlovic, D. Solnyshkov, I. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett.100, 240404 (2008).
[CrossRef] [PubMed]

Portalupi, S. L.

Reardon, C.

Robert-Philip, I.

M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys.11, 033022 (2009).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Ryu, H.-Y.

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett.83, 4294–4296 (2003).
[CrossRef]

J. Huh, J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Nondegenerate monopole mode of single defect two-dimensional triangular photonic band-gap cavity,” J. Appl. Phys.92, 654–659 (2002).
[CrossRef]

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Shelykh, I.

R. Johne, N. Gippius, G. Pavlovic, D. Solnyshkov, I. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett.100, 240404 (2008).
[CrossRef] [PubMed]

Sherwin, M.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83, 4204–4207 (1999).
[CrossRef]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

Shirane, M.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett.94, 033102 (2009).
[CrossRef]

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys.101, 073107 (2007).
[CrossRef]

Skolnick, M. S.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett.100, 121116 (2012).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, and M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett.98, 041101 (2011).
[CrossRef]

Small, A.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83, 4204–4207 (1999).
[CrossRef]

Solnyshkov, D.

R. Johne, N. Gippius, G. Pavlovic, D. Solnyshkov, I. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett.100, 240404 (2008).
[CrossRef] [PubMed]

Solomon, G. S.

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Large optical Stark shifts in semiconductor quantum dots coupled to photonic crystal cavities,” Appl. Phys. Lett.98, 121109 (2011).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Song, B.-S.

Sridharan, D.

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Large optical Stark shifts in semiconductor quantum dots coupled to photonic crystal cavities,” Appl. Phys. Lett.98, 121109 (2011).
[CrossRef]

Srinivasan, K.

Stace, T.

T. Stace, G. Milburn, and C. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B67, 085317 (2003).
[CrossRef]

Sugimoto, Y.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys.101, 073107 (2007).
[CrossRef]

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

Tandaechanurat, A.

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

Tartakovskii, A. I.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett.100, 121116 (2012).
[CrossRef]

Tomita, A.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys.101, 073107 (2007).
[CrossRef]

Tran, N.-V.-Q.

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82, 075120 (2010).
[CrossRef]

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B79, 041101 (2009).
[CrossRef]

Ushida, J.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys.101, 073107 (2007).
[CrossRef]

Waks, E.

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Large optical Stark shifts in semiconductor quantum dots coupled to photonic crystal cavities,” Appl. Phys. Lett.98, 121109 (2011).
[CrossRef]

Wasley, N. A.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett.100, 121116 (2012).
[CrossRef]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Yorozu, S.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett.94, 033102 (2009).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett.

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett.83, 4294–4296 (2003).
[CrossRef]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett.94, 033102 (2009).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, A. M. Fox, M. Hugues, and M. S. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett.98, 041101 (2011).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett.100, 121116 (2012).
[CrossRef]

R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Large optical Stark shifts in semiconductor quantum dots coupled to photonic crystal cavities,” Appl. Phys. Lett.98, 121109 (2011).
[CrossRef]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoǧlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89, 041118 (2006).
[CrossRef]

J. Appl. Phys.

J. Huh, J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Nondegenerate monopole mode of single defect two-dimensional triangular photonic band-gap cavity,” J. Appl. Phys.92, 654–659 (2002).
[CrossRef]

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys.101, 073107 (2007).
[CrossRef]

Nat. Photonics

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010).
[CrossRef]

Nature

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

New J. Phys.

M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys.11, 033022 (2009).
[CrossRef]

Opt. Express

Phys. Rev. B

T. Stace, G. Milburn, and C. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B67, 085317 (2003).
[CrossRef]

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B73, 235117 (2006).
[CrossRef]

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B79, 041101 (2009).
[CrossRef]

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82, 075120 (2010).
[CrossRef]

Phys. Rev. Lett.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83, 4204–4207 (1999).
[CrossRef]

R. Johne, N. Gippius, G. Pavlovic, D. Solnyshkov, I. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett.100, 240404 (2008).
[CrossRef] [PubMed]

Science

O. Painter, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999).
[CrossRef] [PubMed]

Other

We add a note that, with thicker PhC slab, further increase of cavity Q more than 79,000 by the negative Δ3 has been confirmed.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic illustration of the H1 PhC nanocavity. Near-field profiles of the Ey for x-dipole mode (b) and the Ex for y-dipole mode (c).

Fig. 2
Fig. 2

(a) Calculated Q factors (black squares) and coupling efficiencies (red circles), η. Color plots of the calculated far-field patterns for the cavities with Δ3 = 0 (b) and Δ3 = −0.26a (c). White circles indicate the line for the N.A. = 0.65. (d) Comparison of coupling efficiency as a function of the N.A., calculated for Δ3 = 0, −0.26a, −0.28a, and −0.3a.

Fig. 3
Fig. 3

Momentum space distributions for Δ3 = 0 (a) and Δ3 = −0.26a (b). Blue circles indicate the light lines. (c) Ratio of the field components inside the N.A. = 0.65 calculated from momentum space distributions (black balls) and far-field patterns (red balls), as a function of Δ3. (d, e) Distribution of | E y F T | 2 cos θ k plotted with the units of θ sinϕ and θ cosϕ, for Δ3 = 0 (d) and −0.26a (e). White circles in (d) and (e) indicate the line for the N.A. = 0.65.

Fig. 4
Fig. 4

(a) Typical PL spectrum of QD wafer used for the PhC fabrication. (b) PL spectrum of a fabricated cavity with Δ3 = −0.26a (black dots), fitted by a pair of Lorentzian functions (red lines). (c) Experimental Q factors (black balls) and calculated Q factors (Qcalc, red dashed line) as a function of Δ3. (d) Cavity emission intensities (Icav) (black balls, left axis) and calculated coupling efficiencies (red dashed line, right axis) as a function of Δ3. The vertical axis for the PL intensity is arbitrary adjusted for a better tendency comparison with the simulation results. Error bars in (c) and (d) show the standard deviation at each point.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

| k | | | < ω / c | E y F T | 2 d k x d k y | E y F T | 2 d k x d k y ,
| k | | | < 0.65 ω / c | E y F T | 2 cos θ k d k x d k y | k | | | < ω / c | E y F T | 2 cos θ k d k x d k y ,

Metrics