Abstract

Liquid crystals (LCs) are becoming increasingly important for applications in the terahertz frequency range. A detailed understanding of the spectroscopic parameters of these materials over a broad frequency range is crucial in order to design customized LC mixtures for improved performance. We present the frequency dependent index of refraction and the absorption coefficients of the nematic liquid crystal 5CB over a frequency range from 0.3 THz to 15 THz using a dispersion-free THz time-domain spectrometer system based on two-color plasma generation and air biased coherent detection (ABCD). We show that the spectra are dominated by multiple strong spectral features mainly at frequencies above 4 THz, originating from intramolecular vibrational modes of the weakly LC molecules.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. S. Perova, “Far-infrared and low - frequency Raman spectra of condensed matter,” Adv. Chem. Phys.87, 427–482 (1994).
    [CrossRef]
  2. G. J. Evans and M. W. Evans, “Far-infrared spectroscopy of liquid crystals,” Infrared Phys.18(5-6), 863–866 (1978).
    [CrossRef]
  3. G. J. Evans, K. Moscicki, and M. W. Evans, “The Poley absorption in liquid crystals,” J. Mol. Liq.32(2), 149–160 (1986).
    [CrossRef]
  4. F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett.89(22), 221911 (2006).
    [CrossRef]
  5. N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31(11), 1312–1320 (2010).
    [CrossRef]
  6. N. Vieweg and M. Koch, “Terahertz properties of liquid crystals with negative dielectric anisotropy,” Appl. Opt.49(30), 5764–5767 (2010).
    [CrossRef] [PubMed]
  7. M. Heng, S. De-Heng, H. Jun, and P. Yu-Feng, “Simulation study on terahertz vibrational absorption in liquid crystal compounds,” Chin. Phys. B18(3), 1085–1088 (2009).
    [CrossRef]
  8. R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys.103(9), 093523 (2008).
    [CrossRef]
  9. C. S. Yang, C. J. Lin, R. P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C. L. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B27(9), 1866–1873 (2010).
    [CrossRef]
  10. H. Park, E. P. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express20(11), 11899–11905 (2012).
    [CrossRef] [PubMed]
  11. L. Beresnev and W. Haase, “Ferroelectric liquid crystals: development of materials and fast electrooptical elements for non-display applications,” Opt. Mater.9(1-4), 201–211 (1998).
    [CrossRef]
  12. D. Engström, M. J. O’Callaghan, C. Walker, and M. A. Handschy, “Fast beam steering with a ferroelectric-liquid-crystal optical phased array,” Appl. Opt.48(9), 1721–1726 (2009).
    [CrossRef] [PubMed]
  13. C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express12(12), 2625–2630 (2004).
    [CrossRef] [PubMed]
  14. N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J Infrared Milli Terahz Waves33(3), 327–332 (2012).
    [CrossRef]
  15. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J Infrared Milli Terahz Waves32(2), 143–171 (2011).
    [CrossRef]
  16. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys.107(11), 111101 (2010).
    [CrossRef]
  17. U. M. S. Murthy and J. K. Vij, “Submillimetre wave spectroscopy of 4-n-alkyl-4′-cyano biphenyl liquid crystals,” Liquid Cryst.4(5), 529–542 (1989).
    [CrossRef]
  18. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev.5, 124–166 (2011); ibid. 6, 418 (2012).
  19. N. Vieweg, C. Jansen, M. K. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range,” Opt. Express18(6), 6097–6107 (2010).
    [CrossRef] [PubMed]
  20. R. P. Pan, T. R. Tsai, C. Y. Chen, and C. L. Pan, “Optical constants of two typical liquid crystals 5CB and PCH5 in the THz frequency range,” J. Biol. Phys.29(2/3), 335–338 (2003).
    [CrossRef]
  21. R. J. Falconer, H. A. Zakaria, Y. Y. Fan, A. P. Bradley, and A. P. J. Middelberg, “Far-infrared spectroscopy of protein higher-order structures,” Appl. Spectrosc.64(11), 1259–1264 (2010).
    [CrossRef] [PubMed]
  22. J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Science2, 131–143 (2009).
  23. D. G. Cooke, F. C. Krebs, and P. U. Jepsen, “Direct observation of sub-100 fs mobile charge generation in a polymer-fullerene film,” Phys. Rev. Lett.108(5), 056603 (2012).
    [CrossRef] [PubMed]
  24. J. Dai, J. Liu, and X. C. Zhang, “Terahertz wave air photonics: Terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron.17(1), 183–190 (2011).
    [CrossRef]
  25. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett.25(16), 1210–1212 (2000).
    [CrossRef] [PubMed]
  26. M. Kress, T. Löffler, S. Eden, M. Thomson, and H. G. Roskos, “Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves,” Opt. Lett.29(10), 1120–1122 (2004).
    [CrossRef] [PubMed]
  27. X. Xie, J. Dai, and X. C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett.96(7), 075005 (2006).
    [CrossRef] [PubMed]
  28. J. Dai, X. Xie, and X. C. Zhang, “Detection of Broadband Terahertz Waves with a Laser-Induced Plasma in Gases,” Phys. Rev. Lett.97(10), 103903 (2006).
    [CrossRef] [PubMed]
  29. M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett.100(3), 031901 (2012).
    [CrossRef]
  30. S. N. Taraskin, S. I. Simdyankin, S. R. Elliott, J. R. Neilson, and T. Lo, “Universal features of terahertz absorption in disordered materials,” Phys. Rev. Lett.97(5), 055504 (2006).
    [CrossRef] [PubMed]
  31. A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous, and liquid electronic semiconductors,” Prog. Semicond.4, 237–291 (1960).
  32. M. E. Mullen, B. Lüthi, and M. J. Stephen, “Sound velocity in a nematic liquid crystal,” Phys. Rev. Lett.28(13), 799–801 (1972).
    [CrossRef]
  33. P. U. Jepsen and S. J. Clark, “Precise ab-initio prediction of terahertz vibrational modes in crystalline systems,” Chem. Phys. Lett.442(4-6), 275–280 (2007).
    [CrossRef]
  34. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, “Gaussian 09,” (2009).
  35. A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Phys. Rev. A38(6), 3098–3100 (1988).
    [CrossRef] [PubMed]
  36. J. P. Perdew, “Density-functional approximation for the correlation energy of the inhomogeneous electron gas,” Phys. Rev. B 33, 8822–8824, Erratum: B 34, 7406 (1986).
  37. A. Schäfer, H. Horn, and R. Ahlrichs, “Fully optimized contracted Gaussian basis sets for atoms Li to Kr,” J. Chem. Phys.97(4), 2571–2575 (1992).
    [CrossRef]
  38. T. Hanemann, W. Haase, I. Svoboda, and H. Fuess, “Crystal structure of the 4’-pentyl-4-cyanobiphenyl (5CB),” Liquid Cryst.19(5), 699–702 (1995).
    [CrossRef]

2012 (5)

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J Infrared Milli Terahz Waves33(3), 327–332 (2012).
[CrossRef]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev.5, 124–166 (2011); ibid. 6, 418 (2012).

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett.100(3), 031901 (2012).
[CrossRef]

D. G. Cooke, F. C. Krebs, and P. U. Jepsen, “Direct observation of sub-100 fs mobile charge generation in a polymer-fullerene film,” Phys. Rev. Lett.108(5), 056603 (2012).
[CrossRef] [PubMed]

H. Park, E. P. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express20(11), 11899–11905 (2012).
[CrossRef] [PubMed]

2011 (2)

J. Dai, J. Liu, and X. C. Zhang, “Terahertz wave air photonics: Terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron.17(1), 183–190 (2011).
[CrossRef]

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J Infrared Milli Terahz Waves32(2), 143–171 (2011).
[CrossRef]

2010 (6)

2009 (3)

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Science2, 131–143 (2009).

D. Engström, M. J. O’Callaghan, C. Walker, and M. A. Handschy, “Fast beam steering with a ferroelectric-liquid-crystal optical phased array,” Appl. Opt.48(9), 1721–1726 (2009).
[CrossRef] [PubMed]

M. Heng, S. De-Heng, H. Jun, and P. Yu-Feng, “Simulation study on terahertz vibrational absorption in liquid crystal compounds,” Chin. Phys. B18(3), 1085–1088 (2009).
[CrossRef]

2008 (1)

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys.103(9), 093523 (2008).
[CrossRef]

2007 (1)

P. U. Jepsen and S. J. Clark, “Precise ab-initio prediction of terahertz vibrational modes in crystalline systems,” Chem. Phys. Lett.442(4-6), 275–280 (2007).
[CrossRef]

2006 (4)

S. N. Taraskin, S. I. Simdyankin, S. R. Elliott, J. R. Neilson, and T. Lo, “Universal features of terahertz absorption in disordered materials,” Phys. Rev. Lett.97(5), 055504 (2006).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X. C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett.96(7), 075005 (2006).
[CrossRef] [PubMed]

J. Dai, X. Xie, and X. C. Zhang, “Detection of Broadband Terahertz Waves with a Laser-Induced Plasma in Gases,” Phys. Rev. Lett.97(10), 103903 (2006).
[CrossRef] [PubMed]

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett.89(22), 221911 (2006).
[CrossRef]

2004 (2)

2003 (1)

R. P. Pan, T. R. Tsai, C. Y. Chen, and C. L. Pan, “Optical constants of two typical liquid crystals 5CB and PCH5 in the THz frequency range,” J. Biol. Phys.29(2/3), 335–338 (2003).
[CrossRef]

2000 (1)

1998 (1)

L. Beresnev and W. Haase, “Ferroelectric liquid crystals: development of materials and fast electrooptical elements for non-display applications,” Opt. Mater.9(1-4), 201–211 (1998).
[CrossRef]

1995 (1)

T. Hanemann, W. Haase, I. Svoboda, and H. Fuess, “Crystal structure of the 4’-pentyl-4-cyanobiphenyl (5CB),” Liquid Cryst.19(5), 699–702 (1995).
[CrossRef]

1994 (1)

T. S. Perova, “Far-infrared and low - frequency Raman spectra of condensed matter,” Adv. Chem. Phys.87, 427–482 (1994).
[CrossRef]

1992 (1)

A. Schäfer, H. Horn, and R. Ahlrichs, “Fully optimized contracted Gaussian basis sets for atoms Li to Kr,” J. Chem. Phys.97(4), 2571–2575 (1992).
[CrossRef]

1989 (1)

U. M. S. Murthy and J. K. Vij, “Submillimetre wave spectroscopy of 4-n-alkyl-4′-cyano biphenyl liquid crystals,” Liquid Cryst.4(5), 529–542 (1989).
[CrossRef]

1988 (1)

A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Phys. Rev. A38(6), 3098–3100 (1988).
[CrossRef] [PubMed]

1986 (2)

J. P. Perdew, “Density-functional approximation for the correlation energy of the inhomogeneous electron gas,” Phys. Rev. B 33, 8822–8824, Erratum: B 34, 7406 (1986).

G. J. Evans, K. Moscicki, and M. W. Evans, “The Poley absorption in liquid crystals,” J. Mol. Liq.32(2), 149–160 (1986).
[CrossRef]

1978 (1)

G. J. Evans and M. W. Evans, “Far-infrared spectroscopy of liquid crystals,” Infrared Phys.18(5-6), 863–866 (1978).
[CrossRef]

1972 (1)

M. E. Mullen, B. Lüthi, and M. J. Stephen, “Sound velocity in a nematic liquid crystal,” Phys. Rev. Lett.28(13), 799–801 (1972).
[CrossRef]

1960 (1)

A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous, and liquid electronic semiconductors,” Prog. Semicond.4, 237–291 (1960).

Ahlrichs, R.

A. Schäfer, H. Horn, and R. Ahlrichs, “Fully optimized contracted Gaussian basis sets for atoms Li to Kr,” J. Chem. Phys.97(4), 2571–2575 (1992).
[CrossRef]

Al-Naib, I.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J Infrared Milli Terahz Waves33(3), 327–332 (2012).
[CrossRef]

Becke, A. D.

A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Phys. Rev. A38(6), 3098–3100 (1988).
[CrossRef] [PubMed]

Beresnev, L.

L. Beresnev and W. Haase, “Ferroelectric liquid crystals: development of materials and fast electrooptical elements for non-display applications,” Opt. Mater.9(1-4), 201–211 (1998).
[CrossRef]

Bisgaard, C. Z.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett.100(3), 031901 (2012).
[CrossRef]

Born, N.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J Infrared Milli Terahz Waves33(3), 327–332 (2012).
[CrossRef]

Bradley, A. P.

Chen, C. Y.

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys.103(9), 093523 (2008).
[CrossRef]

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express12(12), 2625–2630 (2004).
[CrossRef] [PubMed]

R. P. Pan, T. R. Tsai, C. Y. Chen, and C. L. Pan, “Optical constants of two typical liquid crystals 5CB and PCH5 in the THz frequency range,” J. Biol. Phys.29(2/3), 335–338 (2003).
[CrossRef]

Chigrinov, V. G.

Clark, S. J.

P. U. Jepsen and S. J. Clark, “Precise ab-initio prediction of terahertz vibrational modes in crystalline systems,” Chem. Phys. Lett.442(4-6), 275–280 (2007).
[CrossRef]

Cook, D. J.

Cooke, D. G.

D. G. Cooke, F. C. Krebs, and P. U. Jepsen, “Direct observation of sub-100 fs mobile charge generation in a polymer-fullerene film,” Phys. Rev. Lett.108(5), 056603 (2012).
[CrossRef] [PubMed]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev.5, 124–166 (2011); ibid. 6, 418 (2012).

Dai, J.

J. Dai, J. Liu, and X. C. Zhang, “Terahertz wave air photonics: Terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron.17(1), 183–190 (2011).
[CrossRef]

J. Dai, X. Xie, and X. C. Zhang, “Detection of Broadband Terahertz Waves with a Laser-Induced Plasma in Gases,” Phys. Rev. Lett.97(10), 103903 (2006).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X. C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett.96(7), 075005 (2006).
[CrossRef] [PubMed]

Dai, J. M.

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Science2, 131–143 (2009).

De-Heng, S.

M. Heng, S. De-Heng, H. Jun, and P. Yu-Feng, “Simulation study on terahertz vibrational absorption in liquid crystal compounds,” Chin. Phys. B18(3), 1085–1088 (2009).
[CrossRef]

Eden, S.

Elliott, S. R.

S. N. Taraskin, S. I. Simdyankin, S. R. Elliott, J. R. Neilson, and T. Lo, “Universal features of terahertz absorption in disordered materials,” Phys. Rev. Lett.97(5), 055504 (2006).
[CrossRef] [PubMed]

Engström, D.

Evans, G. J.

G. J. Evans, K. Moscicki, and M. W. Evans, “The Poley absorption in liquid crystals,” J. Mol. Liq.32(2), 149–160 (1986).
[CrossRef]

G. J. Evans and M. W. Evans, “Far-infrared spectroscopy of liquid crystals,” Infrared Phys.18(5-6), 863–866 (1978).
[CrossRef]

Evans, M. W.

G. J. Evans, K. Moscicki, and M. W. Evans, “The Poley absorption in liquid crystals,” J. Mol. Liq.32(2), 149–160 (1986).
[CrossRef]

G. J. Evans and M. W. Evans, “Far-infrared spectroscopy of liquid crystals,” Infrared Phys.18(5-6), 863–866 (1978).
[CrossRef]

Ewert, U.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett.89(22), 221911 (2006).
[CrossRef]

Falconer, R. J.

Fan, F.

Fan, Y. Y.

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys.107(11), 111101 (2010).
[CrossRef]

Fuess, H.

T. Hanemann, W. Haase, I. Svoboda, and H. Fuess, “Crystal structure of the 4’-pentyl-4-cyanobiphenyl (5CB),” Liquid Cryst.19(5), 699–702 (1995).
[CrossRef]

Haase, W.

L. Beresnev and W. Haase, “Ferroelectric liquid crystals: development of materials and fast electrooptical elements for non-display applications,” Opt. Mater.9(1-4), 201–211 (1998).
[CrossRef]

T. Hanemann, W. Haase, I. Svoboda, and H. Fuess, “Crystal structure of the 4’-pentyl-4-cyanobiphenyl (5CB),” Liquid Cryst.19(5), 699–702 (1995).
[CrossRef]

Han, H.

Handschy, M. A.

Hanemann, T.

T. Hanemann, W. Haase, I. Svoboda, and H. Fuess, “Crystal structure of the 4’-pentyl-4-cyanobiphenyl (5CB),” Liquid Cryst.19(5), 699–702 (1995).
[CrossRef]

Hasek, T.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett.89(22), 221911 (2006).
[CrossRef]

Heng, M.

M. Heng, S. De-Heng, H. Jun, and P. Yu-Feng, “Simulation study on terahertz vibrational absorption in liquid crystal compounds,” Chin. Phys. B18(3), 1085–1088 (2009).
[CrossRef]

Ho, I. C.

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Science2, 131–143 (2009).

Hochstrasser, R. M.

Horn, H.

A. Schäfer, H. Horn, and R. Ahlrichs, “Fully optimized contracted Gaussian basis sets for atoms Li to Kr,” J. Chem. Phys.97(4), 2571–2575 (1992).
[CrossRef]

Hsieh, C. F.

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys.103(9), 093523 (2008).
[CrossRef]

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express12(12), 2625–2630 (2004).
[CrossRef] [PubMed]

Ioffe, A. F.

A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous, and liquid electronic semiconductors,” Prog. Semicond.4, 237–291 (1960).

Jansen, C.

Jepsen, P. U.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett.100(3), 031901 (2012).
[CrossRef]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev.5, 124–166 (2011); ibid. 6, 418 (2012).

D. G. Cooke, F. C. Krebs, and P. U. Jepsen, “Direct observation of sub-100 fs mobile charge generation in a polymer-fullerene film,” Phys. Rev. Lett.108(5), 056603 (2012).
[CrossRef] [PubMed]

P. U. Jepsen and S. J. Clark, “Precise ab-initio prediction of terahertz vibrational modes in crystalline systems,” Chem. Phys. Lett.442(4-6), 275–280 (2007).
[CrossRef]

Jun, H.

M. Heng, S. De-Heng, H. Jun, and P. Yu-Feng, “Simulation study on terahertz vibrational absorption in liquid crystal compounds,” Chin. Phys. B18(3), 1085–1088 (2009).
[CrossRef]

Karpowicz, N.

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Science2, 131–143 (2009).

Kleine-Ostmann, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J Infrared Milli Terahz Waves32(2), 143–171 (2011).
[CrossRef]

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev.5, 124–166 (2011); ibid. 6, 418 (2012).

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J Infrared Milli Terahz Waves33(3), 327–332 (2012).
[CrossRef]

N. Vieweg and M. Koch, “Terahertz properties of liquid crystals with negative dielectric anisotropy,” Appl. Opt.49(30), 5764–5767 (2010).
[CrossRef] [PubMed]

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31(11), 1312–1320 (2010).
[CrossRef]

N. Vieweg, C. Jansen, M. K. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range,” Opt. Express18(6), 6097–6107 (2010).
[CrossRef] [PubMed]

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett.89(22), 221911 (2006).
[CrossRef]

Krebs, F. C.

D. G. Cooke, F. C. Krebs, and P. U. Jepsen, “Direct observation of sub-100 fs mobile charge generation in a polymer-fullerene film,” Phys. Rev. Lett.108(5), 056603 (2012).
[CrossRef] [PubMed]

Kress, M.

Krumbholz, N.

Lavrinenko, A. V.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett.100(3), 031901 (2012).
[CrossRef]

Lim, M.

Lin, C. J.

Lin, Y. F.

Liu, J.

J. Dai, J. Liu, and X. C. Zhang, “Terahertz wave air photonics: Terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron.17(1), 183–190 (2011).
[CrossRef]

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Science2, 131–143 (2009).

Lo, T.

S. N. Taraskin, S. I. Simdyankin, S. R. Elliott, J. R. Neilson, and T. Lo, “Universal features of terahertz absorption in disordered materials,” Phys. Rev. Lett.97(5), 055504 (2006).
[CrossRef] [PubMed]

Löffler, T.

Lu, X. F.

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Science2, 131–143 (2009).

Lüthi, B.

M. E. Mullen, B. Lüthi, and M. J. Stephen, “Sound velocity in a nematic liquid crystal,” Phys. Rev. Lett.28(13), 799–801 (1972).
[CrossRef]

Malureanu, R.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett.100(3), 031901 (2012).
[CrossRef]

Middelberg, A. P. J.

Mikulics, M.

N. Vieweg, C. Jansen, M. K. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range,” Opt. Express18(6), 6097–6107 (2010).
[CrossRef] [PubMed]

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31(11), 1312–1320 (2010).
[CrossRef]

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys.107(11), 111101 (2010).
[CrossRef]

Moscicki, K.

G. J. Evans, K. Moscicki, and M. W. Evans, “The Poley absorption in liquid crystals,” J. Mol. Liq.32(2), 149–160 (1986).
[CrossRef]

Mullen, M. E.

M. E. Mullen, B. Lüthi, and M. J. Stephen, “Sound velocity in a nematic liquid crystal,” Phys. Rev. Lett.28(13), 799–801 (1972).
[CrossRef]

Murthy, U. M. S.

U. M. S. Murthy and J. K. Vij, “Submillimetre wave spectroscopy of 4-n-alkyl-4′-cyano biphenyl liquid crystals,” Liquid Cryst.4(5), 529–542 (1989).
[CrossRef]

Nagatsuma, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J Infrared Milli Terahz Waves32(2), 143–171 (2011).
[CrossRef]

Neilson, J. R.

S. N. Taraskin, S. I. Simdyankin, S. R. Elliott, J. R. Neilson, and T. Lo, “Universal features of terahertz absorption in disordered materials,” Phys. Rev. Lett.97(5), 055504 (2006).
[CrossRef] [PubMed]

Novitsky, A.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett.100(3), 031901 (2012).
[CrossRef]

O’Callaghan, M. J.

Pan, C. L.

C. S. Yang, C. J. Lin, R. P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C. L. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B27(9), 1866–1873 (2010).
[CrossRef]

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys.103(9), 093523 (2008).
[CrossRef]

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express12(12), 2625–2630 (2004).
[CrossRef] [PubMed]

R. P. Pan, T. R. Tsai, C. Y. Chen, and C. L. Pan, “Optical constants of two typical liquid crystals 5CB and PCH5 in the THz frequency range,” J. Biol. Phys.29(2/3), 335–338 (2003).
[CrossRef]

Pan, R. P.

C. S. Yang, C. J. Lin, R. P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C. L. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B27(9), 1866–1873 (2010).
[CrossRef]

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys.103(9), 093523 (2008).
[CrossRef]

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express12(12), 2625–2630 (2004).
[CrossRef] [PubMed]

R. P. Pan, T. R. Tsai, C. Y. Chen, and C. L. Pan, “Optical constants of two typical liquid crystals 5CB and PCH5 in the THz frequency range,” J. Biol. Phys.29(2/3), 335–338 (2003).
[CrossRef]

Park, H.

Parrott, E. P.

Perdew, J. P.

J. P. Perdew, “Density-functional approximation for the correlation energy of the inhomogeneous electron gas,” Phys. Rev. B 33, 8822–8824, Erratum: B 34, 7406 (1986).

Perova, T. S.

T. S. Perova, “Far-infrared and low - frequency Raman spectra of condensed matter,” Adv. Chem. Phys.87, 427–482 (1994).
[CrossRef]

Pickwell-MacPherson, E.

Popescu, A.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett.100(3), 031901 (2012).
[CrossRef]

Que, C. T.

Regel, A. R.

A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous, and liquid electronic semiconductors,” Prog. Semicond.4, 237–291 (1960).

Richter, H.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett.89(22), 221911 (2006).
[CrossRef]

Roskos, H. G.

Rutz, F.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett.89(22), 221911 (2006).
[CrossRef]

Savastru, D.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett.100(3), 031901 (2012).
[CrossRef]

Schäfer, A.

A. Schäfer, H. Horn, and R. Ahlrichs, “Fully optimized contracted Gaussian basis sets for atoms Li to Kr,” J. Chem. Phys.97(4), 2571–2575 (1992).
[CrossRef]

Scheller, M.

Scherger, B.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31(11), 1312–1320 (2010).
[CrossRef]

Shakfa, M. K.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31(11), 1312–1320 (2010).
[CrossRef]

N. Vieweg, C. Jansen, M. K. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range,” Opt. Express18(6), 6097–6107 (2010).
[CrossRef] [PubMed]

Simdyankin, S. I.

S. N. Taraskin, S. I. Simdyankin, S. R. Elliott, J. R. Neilson, and T. Lo, “Universal features of terahertz absorption in disordered materials,” Phys. Rev. Lett.97(5), 055504 (2006).
[CrossRef] [PubMed]

Stephen, M. J.

M. E. Mullen, B. Lüthi, and M. J. Stephen, “Sound velocity in a nematic liquid crystal,” Phys. Rev. Lett.28(13), 799–801 (1972).
[CrossRef]

Svoboda, I.

T. Hanemann, W. Haase, I. Svoboda, and H. Fuess, “Crystal structure of the 4’-pentyl-4-cyanobiphenyl (5CB),” Liquid Cryst.19(5), 699–702 (1995).
[CrossRef]

Tani, M.

Taraskin, S. N.

S. N. Taraskin, S. I. Simdyankin, S. R. Elliott, J. R. Neilson, and T. Lo, “Universal features of terahertz absorption in disordered materials,” Phys. Rev. Lett.97(5), 055504 (2006).
[CrossRef] [PubMed]

Thomson, M.

Tsai, T. R.

R. P. Pan, T. R. Tsai, C. Y. Chen, and C. L. Pan, “Optical constants of two typical liquid crystals 5CB and PCH5 in the THz frequency range,” J. Biol. Phys.29(2/3), 335–338 (2003).
[CrossRef]

Vieweg, N.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J Infrared Milli Terahz Waves33(3), 327–332 (2012).
[CrossRef]

N. Vieweg and M. Koch, “Terahertz properties of liquid crystals with negative dielectric anisotropy,” Appl. Opt.49(30), 5764–5767 (2010).
[CrossRef] [PubMed]

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31(11), 1312–1320 (2010).
[CrossRef]

N. Vieweg, C. Jansen, M. K. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range,” Opt. Express18(6), 6097–6107 (2010).
[CrossRef] [PubMed]

Vij, J. K.

U. M. S. Murthy and J. K. Vij, “Submillimetre wave spectroscopy of 4-n-alkyl-4′-cyano biphenyl liquid crystals,” Liquid Cryst.4(5), 529–542 (1989).
[CrossRef]

Walker, C.

Wilk, R.

Xie, X.

J. Dai, X. Xie, and X. C. Zhang, “Detection of Broadband Terahertz Waves with a Laser-Induced Plasma in Gases,” Phys. Rev. Lett.97(10), 103903 (2006).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X. C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett.96(7), 075005 (2006).
[CrossRef] [PubMed]

Yamamoto, K.

Yang, C. S.

Yu-Feng, P.

M. Heng, S. De-Heng, H. Jun, and P. Yu-Feng, “Simulation study on terahertz vibrational absorption in liquid crystal compounds,” Chin. Phys. B18(3), 1085–1088 (2009).
[CrossRef]

Zakaria, H. A.

Zalkovskij, M.

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett.100(3), 031901 (2012).
[CrossRef]

Zhang, X C.

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Science2, 131–143 (2009).

Zhang, X. C.

J. Dai, J. Liu, and X. C. Zhang, “Terahertz wave air photonics: Terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron.17(1), 183–190 (2011).
[CrossRef]

J. Dai, X. Xie, and X. C. Zhang, “Detection of Broadband Terahertz Waves with a Laser-Induced Plasma in Gases,” Phys. Rev. Lett.97(10), 103903 (2006).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X. C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett.96(7), 075005 (2006).
[CrossRef] [PubMed]

Adv. Chem. Phys. (1)

T. S. Perova, “Far-infrared and low - frequency Raman spectra of condensed matter,” Adv. Chem. Phys.87, 427–482 (1994).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett.89(22), 221911 (2006).
[CrossRef]

M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett.100(3), 031901 (2012).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

P. U. Jepsen and S. J. Clark, “Precise ab-initio prediction of terahertz vibrational modes in crystalline systems,” Chem. Phys. Lett.442(4-6), 275–280 (2007).
[CrossRef]

Chin. Phys. B (1)

M. Heng, S. De-Heng, H. Jun, and P. Yu-Feng, “Simulation study on terahertz vibrational absorption in liquid crystal compounds,” Chin. Phys. B18(3), 1085–1088 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Dai, J. Liu, and X. C. Zhang, “Terahertz wave air photonics: Terahertz wave generation and detection with laser-induced gas plasma,” IEEE J. Sel. Top. Quantum Electron.17(1), 183–190 (2011).
[CrossRef]

Infrared Phys. (1)

G. J. Evans and M. W. Evans, “Far-infrared spectroscopy of liquid crystals,” Infrared Phys.18(5-6), 863–866 (1978).
[CrossRef]

J Infrared Milli Terahz Waves (2)

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J Infrared Milli Terahz Waves33(3), 327–332 (2012).
[CrossRef]

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J Infrared Milli Terahz Waves32(2), 143–171 (2011).
[CrossRef]

J. Appl. Phys. (2)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys.107(11), 111101 (2010).
[CrossRef]

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys.103(9), 093523 (2008).
[CrossRef]

J. Biol. Phys. (1)

R. P. Pan, T. R. Tsai, C. Y. Chen, and C. L. Pan, “Optical constants of two typical liquid crystals 5CB and PCH5 in the THz frequency range,” J. Biol. Phys.29(2/3), 335–338 (2003).
[CrossRef]

J. Chem. Phys. (1)

A. Schäfer, H. Horn, and R. Ahlrichs, “Fully optimized contracted Gaussian basis sets for atoms Li to Kr,” J. Chem. Phys.97(4), 2571–2575 (1992).
[CrossRef]

J. Infrared Milli. Terahz. Waves (1)

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J. Infrared Milli. Terahz. Waves31(11), 1312–1320 (2010).
[CrossRef]

J. Mol. Liq. (1)

G. J. Evans, K. Moscicki, and M. W. Evans, “The Poley absorption in liquid crystals,” J. Mol. Liq.32(2), 149–160 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev.5, 124–166 (2011); ibid. 6, 418 (2012).

Liquid Cryst. (2)

U. M. S. Murthy and J. K. Vij, “Submillimetre wave spectroscopy of 4-n-alkyl-4′-cyano biphenyl liquid crystals,” Liquid Cryst.4(5), 529–542 (1989).
[CrossRef]

T. Hanemann, W. Haase, I. Svoboda, and H. Fuess, “Crystal structure of the 4’-pentyl-4-cyanobiphenyl (5CB),” Liquid Cryst.19(5), 699–702 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

L. Beresnev and W. Haase, “Ferroelectric liquid crystals: development of materials and fast electrooptical elements for non-display applications,” Opt. Mater.9(1-4), 201–211 (1998).
[CrossRef]

Phys. Rev. A (1)

A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Phys. Rev. A38(6), 3098–3100 (1988).
[CrossRef] [PubMed]

Phys. Rev. B (1)

J. P. Perdew, “Density-functional approximation for the correlation energy of the inhomogeneous electron gas,” Phys. Rev. B 33, 8822–8824, Erratum: B 34, 7406 (1986).

Phys. Rev. Lett. (5)

M. E. Mullen, B. Lüthi, and M. J. Stephen, “Sound velocity in a nematic liquid crystal,” Phys. Rev. Lett.28(13), 799–801 (1972).
[CrossRef]

D. G. Cooke, F. C. Krebs, and P. U. Jepsen, “Direct observation of sub-100 fs mobile charge generation in a polymer-fullerene film,” Phys. Rev. Lett.108(5), 056603 (2012).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X. C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett.96(7), 075005 (2006).
[CrossRef] [PubMed]

J. Dai, X. Xie, and X. C. Zhang, “Detection of Broadband Terahertz Waves with a Laser-Induced Plasma in Gases,” Phys. Rev. Lett.97(10), 103903 (2006).
[CrossRef] [PubMed]

S. N. Taraskin, S. I. Simdyankin, S. R. Elliott, J. R. Neilson, and T. Lo, “Universal features of terahertz absorption in disordered materials,” Phys. Rev. Lett.97(5), 055504 (2006).
[CrossRef] [PubMed]

Prog. Semicond. (1)

A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous, and liquid electronic semiconductors,” Prog. Semicond.4, 237–291 (1960).

Science (1)

J. M. Dai, X. F. Lu, J. Liu, I. C. Ho, N. Karpowicz, and X C. Zhang, “Remote THz wave sensing in ambient atmosphere,” Science2, 131–143 (2009).

Other (1)

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, “Gaussian 09,” (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Molecular structure of 4’pentyl-4-cyanobiphenyl (5CB).

Fig. 2
Fig. 2

Schematic of the experimental setup.

Fig. 3
Fig. 3

(a) Measured time trace of the THz transient and (b) its corresponding spectrum.

Fig. 4
Fig. 4

THz pulse polarized (a) perpendicular (ordinary, o) and (b) parallel (extraordinary, e) to the preferred direction of the LC molecules

Fig. 5
Fig. 5

(a) Reference pulse (empty cell) and sample pulses for ordinary and extraordinary polarization and (b) corresponding amplitude spectra.

Fig. 6
Fig. 6

(a) Extraordinary and ordinary index of refraction ne and no; and (b) polarization dependent absorption coefficient of 5CB. For comparison, the results obtained previously with a conventional THz TDS system below 2 THz are shown (open circles).

Fig. 7
Fig. 7

Calculated absorption spectrum of 5CB (not polarization dependent). The dotted line represents a Gaussian fit.

Metrics