Abstract

Using femtosecond laser irradiation and subsequent annealing, nanocomposite structures composed of spinel-type ferrimagnetic nanoparticles (NPs) and plasmonic metallic NPs have been formed space-selectively within glass doped with both α-Fe2O3 and Al. The Faraday rotation spectra exhibit a distinct negative peak at around 400 nm, suggesting that the ferrimagnetic Faraday response is enhanced by the localized surface plasmon resonance (LSPR) due to metallic Al NPs. At the interfaces in the nanocomposites, the ferrimagnetism of magnetite NPs is directly coupled with the plasmon in the Al NPs. The control of the resonance wavelength of the magneto-optical peaks, namely, the size of plasmonic NPs has been demonstrated by changing the irradiation or annealing conditions.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and Faraday rotation spectra of Y3Fe5O12,” Phys. Rev. B12(7), 2562–2571 (1975).
    [CrossRef]
  2. P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett.9(4), 1644–1650 (2009).
    [CrossRef] [PubMed]
  3. L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. F. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett.11(3), 1237–1240 (2011).
    [CrossRef] [PubMed]
  4. C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
    [CrossRef] [PubMed]
  5. Y. Q. Li, Q. Zhang, A. V. Nurmikko, and S. H. Sun, “Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs,” Nano Lett.5(9), 1689–1692 (2005).
    [CrossRef] [PubMed]
  6. C. Wang, C. J. Xu, H. Zeng, and S. H. Sun, “Recent progress in syntheses and applications of dumbbell-like nanoparticles,” Adv. Mater. (Deerfield Beach Fla.)21(30), 3045–3052 (2009).
    [CrossRef] [PubMed]
  7. R. Fujikawa, A. V. Baryshev, J. Kim, H. Uchida, and M. Inoue, “Contribution of the surface plasmon resonance to optical and magneto-optical properties of a Bi: YIG-Au nanostructure,” J. Appl. Phys.103(7), 07D301-303 (2008).
    [CrossRef]
  8. S. Ozaki, H. Kura, H. Maki, and T. Sato, “Manipulation of Faraday rotation in Bi-substituted yttrium-iron garnet film using electromagnetic interaction between Au nanoparticles in two-dimensional array,” J. Appl. Phys.106(12), 123530 (2009).
    [CrossRef]
  9. Y. P. Lee, Y. V. Kudryavtsev, V. V. Nemoshkalenko, R. Gontarz, and J. Y. Rhee, “Magneto-optical and optical properties of Fe-rich Au-Fe alloy films near the fcc-bcc structural transformation region,” Phys. Rev. B67(10), 104424 (2003).
    [CrossRef]
  10. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  11. J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett.85(14), 2921–2924 (2000).
    [CrossRef] [PubMed]
  12. T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K. Itoh, “Structural modification in fused silica by a femtosecond fiber laser at 1558 nm,” Opt. Express14(15), 6971–6980 (2006).
    [CrossRef] [PubMed]
  13. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
    [CrossRef] [PubMed]
  14. S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe(2)O(4) thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process.94(1), 83–88 (2009).
    [CrossRef]
  15. K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
    [CrossRef]
  16. K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process.81(1), 1–10 (2005).
    [CrossRef]
  17. K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photon. Rev.4(3), 386–400 (2010).
    [CrossRef]
  18. J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett.81(16), 3040–3042 (2002).
    [CrossRef]
  19. J. R. Qiu, X. W. Jiang, C. S. Zhu, H. Inouye, J. H. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett.29(4), 370–372 (2004).
    [CrossRef] [PubMed]
  20. K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process.93(1), 183–188 (2008).
    [CrossRef]
  21. S. Nakashima, K. Sugioka, and K. Midorikawa, “Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process.104(3), 993–996 (2011).
    [CrossRef]
  22. A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids3(1), 54–114 (1970).
    [CrossRef]
  23. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008).
    [CrossRef]

2011 (2)

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. F. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett.11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

S. Nakashima, K. Sugioka, and K. Midorikawa, “Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process.104(3), 993–996 (2011).
[CrossRef]

2010 (1)

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photon. Rev.4(3), 386–400 (2010).
[CrossRef]

2009 (5)

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe(2)O(4) thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process.94(1), 83–88 (2009).
[CrossRef]

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett.9(4), 1644–1650 (2009).
[CrossRef] [PubMed]

C. Wang, C. J. Xu, H. Zeng, and S. H. Sun, “Recent progress in syntheses and applications of dumbbell-like nanoparticles,” Adv. Mater. (Deerfield Beach Fla.)21(30), 3045–3052 (2009).
[CrossRef] [PubMed]

S. Ozaki, H. Kura, H. Maki, and T. Sato, “Manipulation of Faraday rotation in Bi-substituted yttrium-iron garnet film using electromagnetic interaction between Au nanoparticles in two-dimensional array,” J. Appl. Phys.106(12), 123530 (2009).
[CrossRef]

2008 (3)

R. Fujikawa, A. V. Baryshev, J. Kim, H. Uchida, and M. Inoue, “Contribution of the surface plasmon resonance to optical and magneto-optical properties of a Bi: YIG-Au nanostructure,” J. Appl. Phys.103(7), 07D301-303 (2008).
[CrossRef]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process.93(1), 183–188 (2008).
[CrossRef]

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008).
[CrossRef]

2006 (1)

2005 (2)

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process.81(1), 1–10 (2005).
[CrossRef]

Y. Q. Li, Q. Zhang, A. V. Nurmikko, and S. H. Sun, “Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs,” Nano Lett.5(9), 1689–1692 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

Y. P. Lee, Y. V. Kudryavtsev, V. V. Nemoshkalenko, R. Gontarz, and J. Y. Rhee, “Magneto-optical and optical properties of Fe-rich Au-Fe alloy films near the fcc-bcc structural transformation region,” Phys. Rev. B67(10), 104424 (2003).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

2002 (1)

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett.81(16), 3040–3042 (2002).
[CrossRef]

2000 (1)

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett.85(14), 2921–2924 (2000).
[CrossRef] [PubMed]

1997 (1)

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

1996 (1)

1975 (1)

G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and Faraday rotation spectra of Y3Fe5O12,” Phys. Rev. B12(7), 2562–2571 (1975).
[CrossRef]

1970 (1)

A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids3(1), 54–114 (1970).
[CrossRef]

Ali, T. A.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Baryshev, A. V.

R. Fujikawa, A. V. Baryshev, J. Kim, H. Uchida, and M. Inoue, “Contribution of the surface plasmon resonance to optical and magneto-optical properties of a Bi: YIG-Au nanostructure,” J. Appl. Phys.103(7), 07D301-303 (2008).
[CrossRef]

Bishay, A.

A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids3(1), 54–114 (1970).
[CrossRef]

Carpenter, E. E.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. F. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett.11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

Carroll, K. J.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. F. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett.11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

Chan, G. H.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008).
[CrossRef]

Cheng, Y.

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process.81(1), 1–10 (2005).
[CrossRef]

Clavero, C.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. F. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett.11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

Cohen, A. E.

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett.9(4), 1644–1650 (2009).
[CrossRef] [PubMed]

Davis, K. M.

Duyne, R. P. V.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008).
[CrossRef]

Fujikawa, R.

R. Fujikawa, A. V. Baryshev, J. Kim, H. Uchida, and M. Inoue, “Contribution of the surface plasmon resonance to optical and magneto-optical properties of a Bi: YIG-Au nanostructure,” J. Appl. Phys.103(7), 07D301-303 (2008).
[CrossRef]

Fujita, K.

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe(2)O(4) thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process.94(1), 83–88 (2009).
[CrossRef]

Gerber, G.

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett.85(14), 2921–2924 (2000).
[CrossRef] [PubMed]

Gontarz, R.

Y. P. Lee, Y. V. Kudryavtsev, V. V. Nemoshkalenko, R. Gontarz, and J. Y. Rhee, “Magneto-optical and optical properties of Fe-rich Au-Fe alloy films near the fcc-bcc structural transformation region,” Phys. Rev. B67(10), 104424 (2003).
[CrossRef]

Gu, D. F.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. F. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett.11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

Halas, N. J.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Hanada, Y.

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photon. Rev.4(3), 386–400 (2010).
[CrossRef]

Hirao, K.

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe(2)O(4) thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process.94(1), 83–88 (2009).
[CrossRef]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process.93(1), 183–188 (2008).
[CrossRef]

J. R. Qiu, X. W. Jiang, C. S. Zhu, H. Inouye, J. H. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett.29(4), 370–372 (2004).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett.81(16), 3040–3042 (2002).
[CrossRef]

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Hofmann, C.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Huba, Z.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. F. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett.11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

Inoue, M.

R. Fujikawa, A. V. Baryshev, J. Kim, H. Uchida, and M. Inoue, “Contribution of the surface plasmon resonance to optical and magneto-optical properties of a Bi: YIG-Au nanostructure,” J. Appl. Phys.103(7), 07D301-303 (2008).
[CrossRef]

Inouye, H.

J. R. Qiu, X. W. Jiang, C. S. Zhu, H. Inouye, J. H. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett.29(4), 370–372 (2004).
[CrossRef] [PubMed]

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

Itoh, K.

Jain, P. K.

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett.9(4), 1644–1650 (2009).
[CrossRef] [PubMed]

Jiang, X. W.

J. R. Qiu, X. W. Jiang, C. S. Zhu, H. Inouye, J. H. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett.29(4), 370–372 (2004).
[CrossRef] [PubMed]

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett.81(16), 3040–3042 (2002).
[CrossRef]

Kanehira, S.

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process.93(1), 183–188 (2008).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Kelly, A. T.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Kim, J.

R. Fujikawa, A. V. Baryshev, J. Kim, H. Uchida, and M. Inoue, “Contribution of the surface plasmon resonance to optical and magneto-optical properties of a Bi: YIG-Au nanostructure,” J. Appl. Phys.103(7), 07D301-303 (2008).
[CrossRef]

Kudryavtsev, Y. V.

Y. P. Lee, Y. V. Kudryavtsev, V. V. Nemoshkalenko, R. Gontarz, and J. Y. Rhee, “Magneto-optical and optical properties of Fe-rich Au-Fe alloy films near the fcc-bcc structural transformation region,” Phys. Rev. B67(10), 104424 (2003).
[CrossRef]

Kura, H.

S. Ozaki, H. Kura, H. Maki, and T. Sato, “Manipulation of Faraday rotation in Bi-substituted yttrium-iron garnet film using electromagnetic interaction between Au nanoparticles in two-dimensional array,” J. Appl. Phys.106(12), 123530 (2009).
[CrossRef]

Lacklison, D. E.

G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and Faraday rotation spectra of Y3Fe5O12,” Phys. Rev. B12(7), 2562–2571 (1975).
[CrossRef]

Lee, Y. P.

Y. P. Lee, Y. V. Kudryavtsev, V. V. Nemoshkalenko, R. Gontarz, and J. Y. Rhee, “Magneto-optical and optical properties of Fe-rich Au-Fe alloy films near the fcc-bcc structural transformation region,” Phys. Rev. B67(10), 104424 (2003).
[CrossRef]

Lehmann, J.

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett.85(14), 2921–2924 (2000).
[CrossRef] [PubMed]

Levin, C. S.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Li, Y. Q.

Y. Q. Li, Q. Zhang, A. V. Nurmikko, and S. H. Sun, “Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs,” Nano Lett.5(9), 1689–1692 (2005).
[CrossRef] [PubMed]

Lukaszew, R. A.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. F. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett.11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

Maki, H.

S. Ozaki, H. Kura, H. Maki, and T. Sato, “Manipulation of Faraday rotation in Bi-substituted yttrium-iron garnet film using electromagnetic interaction between Au nanoparticles in two-dimensional array,” J. Appl. Phys.106(12), 123530 (2009).
[CrossRef]

Merschdorf, M.

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett.85(14), 2921–2924 (2000).
[CrossRef] [PubMed]

Midorikawa, K.

S. Nakashima, K. Sugioka, and K. Midorikawa, “Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process.104(3), 993–996 (2011).
[CrossRef]

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photon. Rev.4(3), 386–400 (2010).
[CrossRef]

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process.81(1), 1–10 (2005).
[CrossRef]

Mitsuyu, T.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

Miura, K.

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe(2)O(4) thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process.94(1), 83–88 (2009).
[CrossRef]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process.93(1), 183–188 (2008).
[CrossRef]

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Morosan, E.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Nagai, H.

Nakao, A.

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe(2)O(4) thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process.94(1), 83–88 (2009).
[CrossRef]

Nakashima, S.

S. Nakashima, K. Sugioka, and K. Midorikawa, “Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process.104(3), 993–996 (2011).
[CrossRef]

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe(2)O(4) thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process.94(1), 83–88 (2009).
[CrossRef]

Nakaya, T.

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett.81(16), 3040–3042 (2002).
[CrossRef]

Nemoshkalenko, V. V.

Y. P. Lee, Y. V. Kudryavtsev, V. V. Nemoshkalenko, R. Gontarz, and J. Y. Rhee, “Magneto-optical and optical properties of Fe-rich Au-Fe alloy films near the fcc-bcc structural transformation region,” Phys. Rev. B67(10), 104424 (2003).
[CrossRef]

Nishii, J.

Nordlander, P.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Nurmikko, A. V.

Y. Q. Li, Q. Zhang, A. V. Nurmikko, and S. H. Sun, “Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs,” Nano Lett.5(9), 1689–1692 (2005).
[CrossRef] [PubMed]

Ozaki, S.

S. Ozaki, H. Kura, H. Maki, and T. Sato, “Manipulation of Faraday rotation in Bi-substituted yttrium-iron garnet film using electromagnetic interaction between Au nanoparticles in two-dimensional array,” J. Appl. Phys.106(12), 123530 (2009).
[CrossRef]

Page, J. L.

G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and Faraday rotation spectra of Y3Fe5O12,” Phys. Rev. B12(7), 2562–2571 (1975).
[CrossRef]

Pfeiffer, W.

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett.85(14), 2921–2924 (2000).
[CrossRef] [PubMed]

Qiu, J. R.

J. R. Qiu, X. W. Jiang, C. S. Zhu, H. Inouye, J. H. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett.29(4), 370–372 (2004).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett.81(16), 3040–3042 (2002).
[CrossRef]

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

Ralph, H. I.

G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and Faraday rotation spectra of Y3Fe5O12,” Phys. Rev. B12(7), 2562–2571 (1975).
[CrossRef]

Rhee, J. Y.

Y. P. Lee, Y. V. Kudryavtsev, V. V. Nemoshkalenko, R. Gontarz, and J. Y. Rhee, “Magneto-optical and optical properties of Fe-rich Au-Fe alloy films near the fcc-bcc structural transformation region,” Phys. Rev. B67(10), 104424 (2003).
[CrossRef]

Sakakura, M.

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process.93(1), 183–188 (2008).
[CrossRef]

Sato, T.

S. Ozaki, H. Kura, H. Maki, and T. Sato, “Manipulation of Faraday rotation in Bi-substituted yttrium-iron garnet film using electromagnetic interaction between Au nanoparticles in two-dimensional array,” J. Appl. Phys.106(12), 123530 (2009).
[CrossRef]

Schatz, G. C.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008).
[CrossRef]

Scott, G. B.

G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and Faraday rotation spectra of Y3Fe5O12,” Phys. Rev. B12(7), 2562–2571 (1975).
[CrossRef]

Shimotsuma, Y.

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe(2)O(4) thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process.94(1), 83–88 (2009).
[CrossRef]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process.93(1), 183–188 (2008).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Shirai, M.

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett.81(16), 3040–3042 (2002).
[CrossRef]

Si, J. H.

J. R. Qiu, X. W. Jiang, C. S. Zhu, H. Inouye, J. H. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett.29(4), 370–372 (2004).
[CrossRef] [PubMed]

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett.81(16), 3040–3042 (2002).
[CrossRef]

Sugimoto, N.

Sugioka, K.

S. Nakashima, K. Sugioka, and K. Midorikawa, “Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process.104(3), 993–996 (2011).
[CrossRef]

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photon. Rev.4(3), 386–400 (2010).
[CrossRef]

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process.81(1), 1–10 (2005).
[CrossRef]

Sun, S. H.

C. Wang, C. J. Xu, H. Zeng, and S. H. Sun, “Recent progress in syntheses and applications of dumbbell-like nanoparticles,” Adv. Mater. (Deerfield Beach Fla.)21(30), 3045–3052 (2009).
[CrossRef] [PubMed]

Y. Q. Li, Q. Zhang, A. V. Nurmikko, and S. H. Sun, “Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs,” Nano Lett.5(9), 1689–1692 (2005).
[CrossRef] [PubMed]

Tamaki, T.

Tanaka, K.

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe(2)O(4) thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process.94(1), 83–88 (2009).
[CrossRef]

Thon, A.

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett.85(14), 2921–2924 (2000).
[CrossRef] [PubMed]

Uchida, H.

R. Fujikawa, A. V. Baryshev, J. Kim, H. Uchida, and M. Inoue, “Contribution of the surface plasmon resonance to optical and magneto-optical properties of a Bi: YIG-Au nanostructure,” J. Appl. Phys.103(7), 07D301-303 (2008).
[CrossRef]

Voll, S.

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett.85(14), 2921–2924 (2000).
[CrossRef] [PubMed]

Walsworth, R.

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett.9(4), 1644–1650 (2009).
[CrossRef] [PubMed]

Wang, C.

C. Wang, C. J. Xu, H. Zeng, and S. H. Sun, “Recent progress in syntheses and applications of dumbbell-like nanoparticles,” Adv. Mater. (Deerfield Beach Fla.)21(30), 3045–3052 (2009).
[CrossRef] [PubMed]

Wang, L.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. F. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett.11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

Watanabe, W.

Whitmire, K. H.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Xiao, Y. H.

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett.9(4), 1644–1650 (2009).
[CrossRef] [PubMed]

Xu, C. J.

C. Wang, C. J. Xu, H. Zeng, and S. H. Sun, “Recent progress in syntheses and applications of dumbbell-like nanoparticles,” Adv. Mater. (Deerfield Beach Fla.)21(30), 3045–3052 (2009).
[CrossRef] [PubMed]

Yoshida, M.

Zeng, H.

C. Wang, C. J. Xu, H. Zeng, and S. H. Sun, “Recent progress in syntheses and applications of dumbbell-like nanoparticles,” Adv. Mater. (Deerfield Beach Fla.)21(30), 3045–3052 (2009).
[CrossRef] [PubMed]

Zhang, Q.

Y. Q. Li, Q. Zhang, A. V. Nurmikko, and S. H. Sun, “Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs,” Nano Lett.5(9), 1689–1692 (2005).
[CrossRef] [PubMed]

Zhao, J.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008).
[CrossRef]

Zhu, C. S.

J. R. Qiu, X. W. Jiang, C. S. Zhu, H. Inouye, J. H. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett.29(4), 370–372 (2004).
[CrossRef] [PubMed]

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett.81(16), 3040–3042 (2002).
[CrossRef]

ACS Nano (1)

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

C. Wang, C. J. Xu, H. Zeng, and S. H. Sun, “Recent progress in syntheses and applications of dumbbell-like nanoparticles,” Adv. Mater. (Deerfield Beach Fla.)21(30), 3045–3052 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997).
[CrossRef]

J. R. Qiu, M. Shirai, T. Nakaya, J. H. Si, X. W. Jiang, C. S. Zhu, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett.81(16), 3040–3042 (2002).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (4)

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process.93(1), 183–188 (2008).
[CrossRef]

S. Nakashima, K. Sugioka, and K. Midorikawa, “Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process.104(3), 993–996 (2011).
[CrossRef]

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process.81(1), 1–10 (2005).
[CrossRef]

S. Nakashima, K. Fujita, A. Nakao, K. Tanaka, Y. Shimotsuma, K. Miura, and K. Hirao, “Enhanced magnetization and ferrimagnetic behavior of normal spinel ZnFe(2)O(4) thin film irradiated with femtosecond laser,” Appl. Phys., A Mater. Sci. Process.94(1), 83–88 (2009).
[CrossRef]

J. Appl. Phys. (2)

R. Fujikawa, A. V. Baryshev, J. Kim, H. Uchida, and M. Inoue, “Contribution of the surface plasmon resonance to optical and magneto-optical properties of a Bi: YIG-Au nanostructure,” J. Appl. Phys.103(7), 07D301-303 (2008).
[CrossRef]

S. Ozaki, H. Kura, H. Maki, and T. Sato, “Manipulation of Faraday rotation in Bi-substituted yttrium-iron garnet film using electromagnetic interaction between Au nanoparticles in two-dimensional array,” J. Appl. Phys.106(12), 123530 (2009).
[CrossRef]

J. Non-Cryst. Solids (1)

A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids3(1), 54–114 (1970).
[CrossRef]

J. Phys. Chem. C (1)

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008).
[CrossRef]

Laser Photon. Rev. (1)

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photon. Rev.4(3), 386–400 (2010).
[CrossRef]

Nano Lett. (3)

Y. Q. Li, Q. Zhang, A. V. Nurmikko, and S. H. Sun, “Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs,” Nano Lett.5(9), 1689–1692 (2005).
[CrossRef] [PubMed]

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett.9(4), 1644–1650 (2009).
[CrossRef] [PubMed]

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. F. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett.11(3), 1237–1240 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (2)

G. B. Scott, D. E. Lacklison, H. I. Ralph, and J. L. Page, “Magnetic circular dichroism and Faraday rotation spectra of Y3Fe5O12,” Phys. Rev. B12(7), 2562–2571 (1975).
[CrossRef]

Y. P. Lee, Y. V. Kudryavtsev, V. V. Nemoshkalenko, R. Gontarz, and J. Y. Rhee, “Magneto-optical and optical properties of Fe-rich Au-Fe alloy films near the fcc-bcc structural transformation region,” Phys. Rev. B67(10), 104424 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett.85(14), 2921–2924 (2000).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic procedure for laser-irradiation processes and optical micrograph images for each step. The scale bars represent 5 mm.

Fig. 2
Fig. 2

(a) Optical absorption spectra of the as-prepared (black curve), irradiated (blue curve), and annealed (red curve) glass samples. The inset shows spectra of the samples annealed at 450 °C for 30, 60, and 90 min. (b) Absorption spectra of the glass samples irradiated and annealed at 400, 450, and 550 °C. The inset shows spectra of the samples irradiated at the scanning speed of 1000 and 500 μm/min and the glass irradiated at the pulse energy of 100 μJ/pulse.

Fig. 3
Fig. 3

Inset shows external magnetic field dependences of magnetization at room temperature for as-prepared (black open circles), irradiated and annealed at 400 °C for 30 min (red closed circles), and for 60 min (red open squares). Differences in magnetization between as-prepared and irradiated samples were compared with the samples singly annealed at 400 (black open squares) and 550 °C (black open triangle).

Fig. 4
Fig. 4

(a) Bright-field TEM images taken for the glass sample irradiated and annealed at 550 °C for 30 min. (b) Magnified view of nanocomposite structures.

Fig. 5
Fig. 5

(A) Difference spectra in Faraday rotation angles for the glass irradiated and annealed (a) at 450 °C for 30 min, (b) at 450 °C for 90 min, (c) at 550 °C for 30 min, (d) at 450 °C for 30 min with a scanning speed of 500 μm/s, and (e) at 450 °C for 30 min with a pulse energy of 100 μJ/pulse. Solid lines show Gaussian fit profiles. (B) Faraday rotation angle and that subtracted with diamagnetic contribution of glass matrix as functions of external magnetic field. (C) The best fits, from which the backgrounds are subtracted, were summarized.

Metrics