Abstract

We report ultra-smooth LiNbO3 microdisk resonators fabricated by selective ion implantation, chemical etching, and thermal treatment. The undercut microdisk structure is produced by chemically etching the buried lattice damage layer formed by selective ion implantation. By thermal treatment, surface tension smoothes and reshapes microdisk surface topography. The resonant characteristics of microdisk resonators are simulated by finite element method and are well consistent with the experimental results. The 20μm-diameter microdisk resonator has the FSR of 16.43nm and the Q factor of 2.60 × 104. The produced LiNbO3 microdisk resonators can be utilized in new microdisk applications with electro-optic and nonlinear-optic effects.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express14(15), 6851–6857 (2006).
    [CrossRef] [PubMed]
  2. S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable microdisk resonators vertically coupled to bus waveguides using epitaxial regrowth and wafer bonding techniques,” Appl. Phys. Lett.84(5), 651–653 (2004).
    [CrossRef]
  3. A. C. Tamboli1, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1, 61–64 (2007).
  4. J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett.89(23), 231104 (2006).
    [CrossRef]
  5. L. Stern, I. Goykhman, B. Desiatov, and U. Levy, “Frequency locked microdisk resonator for real time and precise monitoring of refractive index,” Opt. Lett.37(8), 1313–1315 (2012).
    [CrossRef] [PubMed]
  6. T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. von Freymann, T. Mappes, and H. Kalt, “Direct laser writing for active and passive high-Q polymer microdisks on silicon,” Opt. Express19(12), 11451–11456 (2011).
    [CrossRef] [PubMed]
  7. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
    [CrossRef]
  8. Y. S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, W.-G. Lee, and W. H. Steier, “Hybrid Si-LiNbO₃ microring electro-optically tunable resonators for active photonic devices,” Opt. Lett.36(7), 1119–1121 (2011).
    [CrossRef] [PubMed]
  9. T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407–1409 (2000).
    [CrossRef]
  10. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “High-order tunable filters based on a chain of coupled crystalline whispering gallery mode resonators,” IEEE Photon. Technol. Lett.17(1), 136–138 (2005).
    [CrossRef]
  11. K. Sasagawa and M. Tsuchiya, “Lithium niobate disk sensor using photonic heterodyning,” Appl. Phys. Express2, 082201 (2009).
    [CrossRef]
  12. G. Nunzi Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express19(4), 3651–3656 (2011).
    [CrossRef] [PubMed]
  13. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004).
    [CrossRef] [PubMed]
  14. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
    [CrossRef] [PubMed]
  15. K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO:LiNbO3 disk resonator,” Appl. Phys. Express2(12), 122401 (2009).
    [CrossRef]
  16. T.-J. Wang, Y.-H. Tsou, W.-C. Chang, and H. Niu, “Fabrication of three-dimensional crystalline microstructures by selective ion implantation and chemical etching,” Appl. Phys., A Mater. Sci. Process.102(2), 463–467 (2011).
    [CrossRef]
  17. C. Y. J. Ying, C. L. Sones, A. C. Peacock, F. Johann, E. Soergel, R. W. Eason, M. N. Zervas, and S. Mailis, “Ultra-smooth lithium niobate photonic micro-structures by surface tension reshaping,” Opt. Express18(11), 11508–11513 (2010).
    [CrossRef] [PubMed]

2012 (1)

2011 (4)

2010 (2)

C. Y. J. Ying, C. L. Sones, A. C. Peacock, F. Johann, E. Soergel, R. W. Eason, M. N. Zervas, and S. Mailis, “Ultra-smooth lithium niobate photonic micro-structures by surface tension reshaping,” Opt. Express18(11), 11508–11513 (2010).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

2009 (2)

K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO:LiNbO3 disk resonator,” Appl. Phys. Express2(12), 122401 (2009).
[CrossRef]

K. Sasagawa and M. Tsuchiya, “Lithium niobate disk sensor using photonic heterodyning,” Appl. Phys. Express2, 082201 (2009).
[CrossRef]

2007 (2)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

A. C. Tamboli1, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1, 61–64 (2007).

2006 (2)

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett.89(23), 231104 (2006).
[CrossRef]

L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express14(15), 6851–6857 (2006).
[CrossRef] [PubMed]

2005 (1)

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “High-order tunable filters based on a chain of coupled crystalline whispering gallery mode resonators,” IEEE Photon. Technol. Lett.17(1), 136–138 (2005).
[CrossRef]

2004 (2)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004).
[CrossRef] [PubMed]

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable microdisk resonators vertically coupled to bus waveguides using epitaxial regrowth and wafer bonding techniques,” Appl. Phys. Lett.84(5), 651–653 (2004).
[CrossRef]

2000 (1)

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407–1409 (2000).
[CrossRef]

Andersen, U. L.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

Beck, T.

Berneschi, S.

Brunner, K.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett.89(23), 231104 (2006).
[CrossRef]

Chang, W.-C.

T.-J. Wang, Y.-H. Tsou, W.-C. Chang, and H. Niu, “Fabrication of three-dimensional crystalline microstructures by selective ion implantation and chemical etching,” Appl. Phys., A Mater. Sci. Process.102(2), 463–467 (2011).
[CrossRef]

Choi, S. J.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable microdisk resonators vertically coupled to bus waveguides using epitaxial regrowth and wafer bonding techniques,” Appl. Phys. Lett.84(5), 651–653 (2004).
[CrossRef]

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable microdisk resonators vertically coupled to bus waveguides using epitaxial regrowth and wafer bonding techniques,” Appl. Phys. Lett.84(5), 651–653 (2004).
[CrossRef]

Cosi, F.

Dapkus, P. D.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable microdisk resonators vertically coupled to bus waveguides using epitaxial regrowth and wafer bonding techniques,” Appl. Phys. Lett.84(5), 651–653 (2004).
[CrossRef]

Degl’innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Desiatov, B.

Dispenza, M.

Eason, R. W.

Elser, D.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

Forchel, A.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett.89(23), 231104 (2006).
[CrossRef]

Fürst, J. U.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

Goykhman, I.

Grossmann, T.

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Günter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Haberer, E. D.

A. C. Tamboli1, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1, 61–64 (2007).

Hauser, M.

Hu, E. L.

A. C. Tamboli1, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1, 61–64 (2007).

Ilchenko, V. S.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “High-order tunable filters based on a chain of coupled crystalline whispering gallery mode resonators,” IEEE Photon. Technol. Lett.17(1), 136–138 (2005).
[CrossRef]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004).
[CrossRef] [PubMed]

Johann, F.

Kalt, H.

Kim, G.-D.

Kim, W.-J.

Lassen, M.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

Lee, K. H.

A. C. Tamboli1, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1, 61–64 (2007).

Lee, S.-S.

Lee, W.-G.

Lee, Y. S.

Leuchs, G.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

Levy, M.

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407–1409 (2000).
[CrossRef]

Levy, U.

Mahapatra, S.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett.89(23), 231104 (2006).
[CrossRef]

Mailis, S.

Maleki, L.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “High-order tunable filters based on a chain of coupled crystalline whispering gallery mode resonators,” IEEE Photon. Technol. Lett.17(1), 136–138 (2005).
[CrossRef]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004).
[CrossRef] [PubMed]

Mappes, T.

Marquardt, C.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

Matsko, A. B.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “High-order tunable filters based on a chain of coupled crystalline whispering gallery mode resonators,” IEEE Photon. Technol. Lett.17(1), 136–138 (2005).
[CrossRef]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004).
[CrossRef] [PubMed]

Nakamura, S.

A. C. Tamboli1, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1, 61–64 (2007).

Niu, H.

T.-J. Wang, Y.-H. Tsou, W.-C. Chang, and H. Niu, “Fabrication of three-dimensional crystalline microstructures by selective ion implantation and chemical etching,” Appl. Phys., A Mater. Sci. Process.102(2), 463–467 (2011).
[CrossRef]

Nunzi Conti, G.

Osgood, R. M.

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407–1409 (2000).
[CrossRef]

Peacock, A. C.

Pelli, S.

Peng, Z.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable microdisk resonators vertically coupled to bus waveguides using epitaxial regrowth and wafer bonding techniques,” Appl. Phys. Lett.84(5), 651–653 (2004).
[CrossRef]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Poon, A. W.

Ramadan, T. A.

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407–1409 (2000).
[CrossRef]

Renner, J.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett.89(23), 231104 (2006).
[CrossRef]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Righini, G. C.

Sasagawa, K.

K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO:LiNbO3 disk resonator,” Appl. Phys. Express2(12), 122401 (2009).
[CrossRef]

K. Sasagawa and M. Tsuchiya, “Lithium niobate disk sensor using photonic heterodyning,” Appl. Phys. Express2, 082201 (2009).
[CrossRef]

Savchenkov, A. A.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “High-order tunable filters based on a chain of coupled crystalline whispering gallery mode resonators,” IEEE Photon. Technol. Lett.17(1), 136–138 (2005).
[CrossRef]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004).
[CrossRef] [PubMed]

Schleede, S.

Secchi, A.

Sharma, R.

A. C. Tamboli1, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1, 61–64 (2007).

Soergel, E.

Sones, C. L.

Soria, S.

Steier, W. H.

Stern, L.

Strekalov, D. V.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

Tamboli1, A. C.

A. C. Tamboli1, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1, 61–64 (2007).

Thiel, M.

Tsou, Y.-H.

T.-J. Wang, Y.-H. Tsou, W.-C. Chang, and H. Niu, “Fabrication of three-dimensional crystalline microstructures by selective ion implantation and chemical etching,” Appl. Phys., A Mater. Sci. Process.102(2), 463–467 (2011).
[CrossRef]

Tsuchiya, M.

K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO:LiNbO3 disk resonator,” Appl. Phys. Express2(12), 122401 (2009).
[CrossRef]

K. Sasagawa and M. Tsuchiya, “Lithium niobate disk sensor using photonic heterodyning,” Appl. Phys. Express2, 082201 (2009).
[CrossRef]

von Freymann, G.

Wang, T.-J.

T.-J. Wang, Y.-H. Tsou, W.-C. Chang, and H. Niu, “Fabrication of three-dimensional crystalline microstructures by selective ion implantation and chemical etching,” Appl. Phys., A Mater. Sci. Process.102(2), 463–467 (2011).
[CrossRef]

Worschech, L.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett.89(23), 231104 (2006).
[CrossRef]

Yang, Q.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable microdisk resonators vertically coupled to bus waveguides using epitaxial regrowth and wafer bonding techniques,” Appl. Phys. Lett.84(5), 651–653 (2004).
[CrossRef]

Ying, C. Y. J.

Zervas, M. N.

Zhou, L.

Appl. Phys. Express (2)

K. Sasagawa and M. Tsuchiya, “Lithium niobate disk sensor using photonic heterodyning,” Appl. Phys. Express2, 082201 (2009).
[CrossRef]

K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO:LiNbO3 disk resonator,” Appl. Phys. Express2(12), 122401 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407–1409 (2000).
[CrossRef]

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable microdisk resonators vertically coupled to bus waveguides using epitaxial regrowth and wafer bonding techniques,” Appl. Phys. Lett.84(5), 651–653 (2004).
[CrossRef]

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett.89(23), 231104 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

T.-J. Wang, Y.-H. Tsou, W.-C. Chang, and H. Niu, “Fabrication of three-dimensional crystalline microstructures by selective ion implantation and chemical etching,” Appl. Phys., A Mater. Sci. Process.102(2), 463–467 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “High-order tunable filters based on a chain of coupled crystalline whispering gallery mode resonators,” IEEE Photon. Technol. Lett.17(1), 136–138 (2005).
[CrossRef]

Nat. Photonics (2)

A. C. Tamboli1, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1, 61–64 (2007).

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Fabrication process of the LiNbO3 undercut microdisk; (b) the vacancy concentration distribution in the three regions on LiNbO3 (LN) labeled in Fig. 1(a)-4.

Fig. 2
Fig. 2

Photographs of the 20μm-diameter LiNbO3 microdisks (a-d) without thermal treatment; (e-h) with thermal treatment at 1120þC for 3hrs. (a,b,e,f), (c,g), and (d,h) are measured by scanning electron microscope, reflection microscope, and transmission microscope.

Fig. 3
Fig. 3

(a) Measurement setup of LiNbO3 microdisk resonators; (b) photograph of the 20μm-diameter microdisk coupled with the tapered fiber.

Fig. 4
Fig. 4

(a) Comparison of effective index for the microdisk resonant modes and the tapered fiber mode; (b) the simulated field profiles of microdisk resonant modes.

Fig. 5
Fig. 5

Transmission spectrums of the LiNbO3 microdisk resonators labeled with loaded quality factor Q and mode order TM1,m (a) without thermal treatment; (b) with thermal treatment.

Metrics