Abstract

Carbon-coated optical fibers are used here for reducing the luminescence background created by the primary-coating and thus increase the sensitivity of fiber-based spectroscopy systems. The 2-3 orders of magnitude signal-to-noise ratio improvement with standard telecom fibers is sufficient to allow for their use as Raman probes in the identification of organic solvents.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Lindholm, J. Li, A. S. Hokansson, and J. Abramczyk, “Low speed carbon deposition process for hermetic optical fibers,” in Proceedings of International Wire and Cable Symposium (IWCS), 1999.
  2. J. Li, E. A. Lindholm, J. Horska, and J. Abramczyk, Advances in design and development of optical fibers for harsh environments” (Specialty Photonics, 1999). http://specialtyphotonics.com/about/white_papers/Harsh%20Environs.pdf
  3. A. Méndez and T. F. Morse, Specialty Optical Fibers Handbook (Academic Press, 2006), Chap. 14.
  4. D. A. Pinnow, G. D. Robertson, and J. A. Wysocki, “Reduction in static fatigue of silica fibers by hermetic jacketing,” Appl. Phys. Lett.34(1), 17–19 (1979).
    [CrossRef]
  5. A. Tomita and P. J. Lemaire, “Hydrogen-induced loss increases in germanium-doped single-mode fibers,” Electron. Lett.20, 512–514 (1985).
  6. A. Wax, M. G. Giacomelli, T. E. Matthews, M. T. Rinehart, F. E. Robles, and Y. Zhu, “Optical spectroscopy of biological cells,” Adv. Opt. Photon.4(3), 322–378 (2012).
    [CrossRef]
  7. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8(1), 121–147 (2003).
    [CrossRef] [PubMed]
  8. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part I: model for liquids and transparent solids,” Appl. Spectrosc.50(7), 836–848 (1996).
    [CrossRef]
  9. M. Gallagher and U. Österberg, “Spectroscopy of defects in germanium-doped silica glass,” J. Appl. Phys.74(4), 2771–2778 (1993).
    [CrossRef]
  10. S. Kannan, M. E. Fineman, and G. H. Sigel., “Defect-related luminescent patterns in bulk silica and optical fibers stimulated by sub-band gap (248 nm) excimer laser radiation,” J. Lumin.60-61, 433–436 (1994).
    [CrossRef]
  11. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part II: tests of single-fiber, lensed, and flat- and bevel-tip multi-fiber probes,” Appl. Spectrosc.50(7), 849–860 (1996).
    [CrossRef]
  12. E. Schartner, H. Ebendorff-Heidepriem, and T. Monro, “Sensitive fluorescence detection with microstructured optical fibers,” Proc. SPIE8028, 802805 (2011).
    [CrossRef]
  13. J. Ma and Y. S. Li, “Fiber Raman background study and its application in setting up optical fiber Raman probes,” Appl. Opt.35(15), 2527–2533 (1996).
    [CrossRef] [PubMed]
  14. C. J. de Lima, S. Sathaiah, L. Silveira, R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artif. Organs24(3), 231–234 (2000).
    [CrossRef] [PubMed]
  15. M. L. Myrick and S. M. Angel, “Elimination of background in fiber-optic Raman measurements,” Appl. Spectrosc.44(4), 565–570 (1990).
    [CrossRef]
  16. R. B. Thompson, M. Levine, and L. Kondracki, “Component selection for fiber-optic fluorometry,” Appl. Spectrosc.44(1), 117–122 (1990).
    [CrossRef]
  17. S. Dai, J. E. Coffield, G. Mamantov, and J. P. Young, “Reduction of fused-silica-fiber Raman backgrounds in high-temperature fiber-optic Raman spectroscopy via the measurement of anti-Stokes Raman spectra,” Appl. Spectrosc.48(6), 766–768 (1994).
    [CrossRef]
  18. J. Nordborg and H. Karlsson, “Multiline DPSS lasers – a true Ar-ion alternative” (EuroPhotonics, June/July, 2004). http://www.cobolt.se/Filer/dokument/europhotonics_dual-calypso_july04_cobolt.pdf
  19. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B1(4), 652–657 (1984).
    [CrossRef]
  20. G. H. Sigel and M. J. Marrone, “Photoluminescence in as-drawn and irradiated silica optical fibers: an assessment of the role of non-bridging oxygen defect centers,” J. Non-Cryst. Solids45(2), 235–247 (1981).
    [CrossRef]
  21. M. L. Myrick, S. M. Angel, and R. Desiderio, “Comparison of some fiber optic configurations for measurement of luminescence and Raman scattering,” Appl. Opt.29(9), 1333–1344 (1990).
    [CrossRef] [PubMed]

2012 (1)

2011 (1)

E. Schartner, H. Ebendorff-Heidepriem, and T. Monro, “Sensitive fluorescence detection with microstructured optical fibers,” Proc. SPIE8028, 802805 (2011).
[CrossRef]

2003 (1)

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8(1), 121–147 (2003).
[CrossRef] [PubMed]

2000 (1)

C. J. de Lima, S. Sathaiah, L. Silveira, R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artif. Organs24(3), 231–234 (2000).
[CrossRef] [PubMed]

1996 (3)

1994 (2)

S. Kannan, M. E. Fineman, and G. H. Sigel., “Defect-related luminescent patterns in bulk silica and optical fibers stimulated by sub-band gap (248 nm) excimer laser radiation,” J. Lumin.60-61, 433–436 (1994).
[CrossRef]

S. Dai, J. E. Coffield, G. Mamantov, and J. P. Young, “Reduction of fused-silica-fiber Raman backgrounds in high-temperature fiber-optic Raman spectroscopy via the measurement of anti-Stokes Raman spectra,” Appl. Spectrosc.48(6), 766–768 (1994).
[CrossRef]

1993 (1)

M. Gallagher and U. Österberg, “Spectroscopy of defects in germanium-doped silica glass,” J. Appl. Phys.74(4), 2771–2778 (1993).
[CrossRef]

1990 (3)

1985 (1)

A. Tomita and P. J. Lemaire, “Hydrogen-induced loss increases in germanium-doped single-mode fibers,” Electron. Lett.20, 512–514 (1985).

1984 (1)

1981 (1)

G. H. Sigel and M. J. Marrone, “Photoluminescence in as-drawn and irradiated silica optical fibers: an assessment of the role of non-bridging oxygen defect centers,” J. Non-Cryst. Solids45(2), 235–247 (1981).
[CrossRef]

1979 (1)

D. A. Pinnow, G. D. Robertson, and J. A. Wysocki, “Reduction in static fatigue of silica fibers by hermetic jacketing,” Appl. Phys. Lett.34(1), 17–19 (1979).
[CrossRef]

Angel, S. M.

Coffield, J. E.

Cooney, T. F.

Dai, S.

de Lima, C. J.

C. J. de Lima, S. Sathaiah, L. Silveira, R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artif. Organs24(3), 231–234 (2000).
[CrossRef] [PubMed]

Desiderio, R.

Ebendorff-Heidepriem, H.

E. Schartner, H. Ebendorff-Heidepriem, and T. Monro, “Sensitive fluorescence detection with microstructured optical fibers,” Proc. SPIE8028, 802805 (2011).
[CrossRef]

Fineman, M. E.

S. Kannan, M. E. Fineman, and G. H. Sigel., “Defect-related luminescent patterns in bulk silica and optical fibers stimulated by sub-band gap (248 nm) excimer laser radiation,” J. Lumin.60-61, 433–436 (1994).
[CrossRef]

Gallagher, M.

M. Gallagher and U. Österberg, “Spectroscopy of defects in germanium-doped silica glass,” J. Appl. Phys.74(4), 2771–2778 (1993).
[CrossRef]

Giacomelli, M. G.

Jain, R. K.

Kannan, S.

S. Kannan, M. E. Fineman, and G. H. Sigel., “Defect-related luminescent patterns in bulk silica and optical fibers stimulated by sub-band gap (248 nm) excimer laser radiation,” J. Lumin.60-61, 433–436 (1994).
[CrossRef]

Kondracki, L.

Lee, C.

Lemaire, P. J.

A. Tomita and P. J. Lemaire, “Hydrogen-induced loss increases in germanium-doped single-mode fibers,” Electron. Lett.20, 512–514 (1985).

Levine, M.

Li, Y. S.

Ma, J.

Mamantov, G.

Marrone, M. J.

G. H. Sigel and M. J. Marrone, “Photoluminescence in as-drawn and irradiated silica optical fibers: an assessment of the role of non-bridging oxygen defect centers,” J. Non-Cryst. Solids45(2), 235–247 (1981).
[CrossRef]

Matthews, T. E.

Monro, T.

E. Schartner, H. Ebendorff-Heidepriem, and T. Monro, “Sensitive fluorescence detection with microstructured optical fibers,” Proc. SPIE8028, 802805 (2011).
[CrossRef]

Myrick, M. L.

Österberg, U.

M. Gallagher and U. Österberg, “Spectroscopy of defects in germanium-doped silica glass,” J. Appl. Phys.74(4), 2771–2778 (1993).
[CrossRef]

Pacheco, M. T. T.

C. J. de Lima, S. Sathaiah, L. Silveira, R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artif. Organs24(3), 231–234 (2000).
[CrossRef] [PubMed]

Pinnow, D. A.

D. A. Pinnow, G. D. Robertson, and J. A. Wysocki, “Reduction in static fatigue of silica fibers by hermetic jacketing,” Appl. Phys. Lett.34(1), 17–19 (1979).
[CrossRef]

Richards-Kortum, R. R.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8(1), 121–147 (2003).
[CrossRef] [PubMed]

Rinehart, M. T.

Robertson, G. D.

D. A. Pinnow, G. D. Robertson, and J. A. Wysocki, “Reduction in static fatigue of silica fibers by hermetic jacketing,” Appl. Phys. Lett.34(1), 17–19 (1979).
[CrossRef]

Robles, F. E.

Sathaiah, S.

C. J. de Lima, S. Sathaiah, L. Silveira, R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artif. Organs24(3), 231–234 (2000).
[CrossRef] [PubMed]

Schartner, E.

E. Schartner, H. Ebendorff-Heidepriem, and T. Monro, “Sensitive fluorescence detection with microstructured optical fibers,” Proc. SPIE8028, 802805 (2011).
[CrossRef]

Sigel, G. H.

S. Kannan, M. E. Fineman, and G. H. Sigel., “Defect-related luminescent patterns in bulk silica and optical fibers stimulated by sub-band gap (248 nm) excimer laser radiation,” J. Lumin.60-61, 433–436 (1994).
[CrossRef]

G. H. Sigel and M. J. Marrone, “Photoluminescence in as-drawn and irradiated silica optical fibers: an assessment of the role of non-bridging oxygen defect centers,” J. Non-Cryst. Solids45(2), 235–247 (1981).
[CrossRef]

Silveira, L.

C. J. de Lima, S. Sathaiah, L. Silveira, R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artif. Organs24(3), 231–234 (2000).
[CrossRef] [PubMed]

Skinner, H. T.

Stolen, R. H.

Thompson, R. B.

Tomita, A.

A. Tomita and P. J. Lemaire, “Hydrogen-induced loss increases in germanium-doped single-mode fibers,” Electron. Lett.20, 512–514 (1985).

Utzinger, U.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8(1), 121–147 (2003).
[CrossRef] [PubMed]

Wax, A.

Wysocki, J. A.

D. A. Pinnow, G. D. Robertson, and J. A. Wysocki, “Reduction in static fatigue of silica fibers by hermetic jacketing,” Appl. Phys. Lett.34(1), 17–19 (1979).
[CrossRef]

Young, J. P.

Zângaro, R. A.

C. J. de Lima, S. Sathaiah, L. Silveira, R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artif. Organs24(3), 231–234 (2000).
[CrossRef] [PubMed]

Zhu, Y.

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. A. Pinnow, G. D. Robertson, and J. A. Wysocki, “Reduction in static fatigue of silica fibers by hermetic jacketing,” Appl. Phys. Lett.34(1), 17–19 (1979).
[CrossRef]

Appl. Spectrosc. (5)

Artif. Organs (1)

C. J. de Lima, S. Sathaiah, L. Silveira, R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artif. Organs24(3), 231–234 (2000).
[CrossRef] [PubMed]

Electron. Lett. (1)

A. Tomita and P. J. Lemaire, “Hydrogen-induced loss increases in germanium-doped single-mode fibers,” Electron. Lett.20, 512–514 (1985).

J. Appl. Phys. (1)

M. Gallagher and U. Österberg, “Spectroscopy of defects in germanium-doped silica glass,” J. Appl. Phys.74(4), 2771–2778 (1993).
[CrossRef]

J. Biomed. Opt. (1)

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8(1), 121–147 (2003).
[CrossRef] [PubMed]

J. Lumin. (1)

S. Kannan, M. E. Fineman, and G. H. Sigel., “Defect-related luminescent patterns in bulk silica and optical fibers stimulated by sub-band gap (248 nm) excimer laser radiation,” J. Lumin.60-61, 433–436 (1994).
[CrossRef]

J. Non-Cryst. Solids (1)

G. H. Sigel and M. J. Marrone, “Photoluminescence in as-drawn and irradiated silica optical fibers: an assessment of the role of non-bridging oxygen defect centers,” J. Non-Cryst. Solids45(2), 235–247 (1981).
[CrossRef]

J. Opt. Soc. Am. B (1)

Proc. SPIE (1)

E. Schartner, H. Ebendorff-Heidepriem, and T. Monro, “Sensitive fluorescence detection with microstructured optical fibers,” Proc. SPIE8028, 802805 (2011).
[CrossRef]

Other (4)

J. Nordborg and H. Karlsson, “Multiline DPSS lasers – a true Ar-ion alternative” (EuroPhotonics, June/July, 2004). http://www.cobolt.se/Filer/dokument/europhotonics_dual-calypso_july04_cobolt.pdf

E. A. Lindholm, J. Li, A. S. Hokansson, and J. Abramczyk, “Low speed carbon deposition process for hermetic optical fibers,” in Proceedings of International Wire and Cable Symposium (IWCS), 1999.

J. Li, E. A. Lindholm, J. Horska, and J. Abramczyk, Advances in design and development of optical fibers for harsh environments” (Specialty Photonics, 1999). http://specialtyphotonics.com/about/white_papers/Harsh%20Environs.pdf

A. Méndez and T. F. Morse, Specialty Optical Fibers Handbook (Academic Press, 2006), Chap. 14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of experimental setup. The inset shows an example of carbon-coated fiber.

Fig. 2
Fig. 2

Luminescence of (a) standard acrylate primary-coating used in STF and (b) silica fibers without primary-coating. The fibers are exposed from the side with 491 nm radiation, and the light does not propagate along the core.

Fig. 3
Fig. 3

Comparison between luminescence from four types of fiber with acrylate primary-coating. SMF28 germaninum-doped fiber (black) and pure-silica fiber (red) give strong luminescence, while a carbon-coating suppresses the signal in germanium-doped fiber (blue) and pure-silica fiber (magenta), barely discernible above the x-axis on this scale.

Fig. 4
Fig. 4

(a) The luminescence of carbon-coated germanium-doped fiber (blue) and carbon-coated pure-silica fiber (magenta) are displayed on an expanded scale. In spite of the acrylate, the luminescence is weak and the peak is now at ~650 nm. (b) Luminescence from four fiber types without the primary acrylate coating: STF (black trace); germanium-doped fiber with carbon-coating (blue); pure-silica fiber (red) and pure-silica fiber with carbon-coating (magenta).

Fig. 5
Fig. 5

Luminescence from two types of germanium-doped fiber with standard acrylate primary-coating bent to different radius. (a) The fiber has no carbon-layer and shorter bends lead to increased luminescence from the coating. (b) The fiber has a carbon-coating, and the weak signal does not depend on the bend radius.

Fig. 6
Fig. 6

Luminescence from STF with primary-coating used as a fiber Raman probe. (a) The fiber tip is inserted in a glass vessel either empty (reference) or with acetone, methanol or ethanol. (b) Signal measured after subtracting the reference (and vertical shifting for easier reading). Raman signals comparable to the background noise can be identified between 570 nm and 580 nm.

Fig. 7
Fig. 7

Luminescence from carbon-coated STF with primary-coating used as a fiber Raman probe. (a) The fiber tip is inserted in a glass vessel either empty (reference) or with acetone, methanol or ethanol. (b) Signal measured after subtracting the reference (and vertical shifting for easier reading). Raman signal well above background noise can be seen between 570 nm and 580 nm.

Metrics