Abstract

Surface Plasmon microscopy enables measurement of local refractive index on a far finer scale than prism based systems. An interferometric or confocal system gives the so-called V(z) curve when the sample is scanned axially, which gives a measure of the surface plasmon propagation velocity. We show how a phase spatial light modulator (i) performs the necessary pupil function apodization (ii) imposes an angular varying phase shift that effectively changes sample defocus without any mechanical movement and (iii) changes the relative phase of the surface plasmon and reference beam to provide signal enhancement not possible with previous configurations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kano and W. Knoll, “Locally excited surface-plasmon-polaritons for thickness measurement of LBK films,” Opt. Commun.153(4-6), 235–239 (1998).
    [CrossRef]
  2. M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, “High-resolution scanning surface-plasmon microscopy,” Appl. Opt.39(34), 6279–6287 (2000).
    [CrossRef] [PubMed]
  3. M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, “Optical V(z) for high-resolution 2pi surface plasmon microscopy,” Opt. Lett.25(11), 823–825 (2000).
    [CrossRef] [PubMed]
  4. M. G. Somekh, G. Stabler, S. Liu, J. Zhang, and C. W. See, “Wide-field high-resolution surface-plasmon interference microscopy,” Opt. Lett.34(20), 3110–3112 (2009).
    [CrossRef] [PubMed]
  5. B. Zhang, S. Pechprasarn, J. Zhang, and M. G. Somekh, “Confocal surface plasmon microscopy with pupil function engineering,” Opt. Express20(7), 7388–7397 (2012).
    [CrossRef] [PubMed]
  6. L. Berguiga, S. Zhang, F. Argoul, and J. Elezgaray, “High-resolution surface-plasmon imaging in air and in water: V(z) curve and operating conditions,” Opt. Lett.32(5), 509–511 (2007).
    [CrossRef] [PubMed]
  7. S. Pechprasarn and M. G. Somekh, “Surface plasmon microscopy: resolution, sensitivity and crosstalk,” J. Microsc.246(3), 287–297 (2012).
    [CrossRef] [PubMed]
  8. M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol.164(1), 75–80 (2008).
    [CrossRef] [PubMed]
  9. L. Berguiga, T. Roland, K. Monier, J. Elezgaray, and F. Argoul, “Amplitude and phase images of cellular structures with a scanning surface plasmon microscope,” Opt. Express19(7), 6571–6586 (2011).
    [CrossRef] [PubMed]

2012 (2)

S. Pechprasarn and M. G. Somekh, “Surface plasmon microscopy: resolution, sensitivity and crosstalk,” J. Microsc.246(3), 287–297 (2012).
[CrossRef] [PubMed]

B. Zhang, S. Pechprasarn, J. Zhang, and M. G. Somekh, “Confocal surface plasmon microscopy with pupil function engineering,” Opt. Express20(7), 7388–7397 (2012).
[CrossRef] [PubMed]

2011 (1)

2009 (1)

2008 (1)

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol.164(1), 75–80 (2008).
[CrossRef] [PubMed]

2007 (1)

2000 (2)

1998 (1)

H. Kano and W. Knoll, “Locally excited surface-plasmon-polaritons for thickness measurement of LBK films,” Opt. Commun.153(4-6), 235–239 (1998).
[CrossRef]

Argoul, F.

Berguiga, L.

Britland, S. T.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol.164(1), 75–80 (2008).
[CrossRef] [PubMed]

Denyer, M. C. T.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol.164(1), 75–80 (2008).
[CrossRef] [PubMed]

Elezgaray, J.

Jamil, M. M. A.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol.164(1), 75–80 (2008).
[CrossRef] [PubMed]

Kano, H.

H. Kano and W. Knoll, “Locally excited surface-plasmon-polaritons for thickness measurement of LBK films,” Opt. Commun.153(4-6), 235–239 (1998).
[CrossRef]

Knoll, W.

H. Kano and W. Knoll, “Locally excited surface-plasmon-polaritons for thickness measurement of LBK films,” Opt. Commun.153(4-6), 235–239 (1998).
[CrossRef]

Liu, S.

M. G. Somekh, G. Stabler, S. Liu, J. Zhang, and C. W. See, “Wide-field high-resolution surface-plasmon interference microscopy,” Opt. Lett.34(20), 3110–3112 (2009).
[CrossRef] [PubMed]

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol.164(1), 75–80 (2008).
[CrossRef] [PubMed]

Liu, S. G.

Monier, K.

Pechprasarn, S.

B. Zhang, S. Pechprasarn, J. Zhang, and M. G. Somekh, “Confocal surface plasmon microscopy with pupil function engineering,” Opt. Express20(7), 7388–7397 (2012).
[CrossRef] [PubMed]

S. Pechprasarn and M. G. Somekh, “Surface plasmon microscopy: resolution, sensitivity and crosstalk,” J. Microsc.246(3), 287–297 (2012).
[CrossRef] [PubMed]

Roland, T.

See, C. W.

Somekh, M. G.

Stabler, G.

Velinov, T. S.

Youseffi, M.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol.164(1), 75–80 (2008).
[CrossRef] [PubMed]

Zhang, B.

Zhang, J.

Zhang, S.

Appl. Opt. (1)

J. Microsc. (1)

S. Pechprasarn and M. G. Somekh, “Surface plasmon microscopy: resolution, sensitivity and crosstalk,” J. Microsc.246(3), 287–297 (2012).
[CrossRef] [PubMed]

J. Struct. Biol. (1)

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol.164(1), 75–80 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

H. Kano and W. Knoll, “Locally excited surface-plasmon-polaritons for thickness measurement of LBK films,” Opt. Commun.153(4-6), 235–239 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Simplified schematic showing operation of confocal microscope with SP excitation; (b) Schematic of optical system showing relationship between different planes in the system.

Fig. 2
Fig. 2

(a) Pupil function distribution (red curve and blue curve are the pupil functions used in the experiment, the black curve show the calculated reflection coefficient for p-incident polarization on an uncoated sample. Note the blue curve overlaps the red for large incident angles (b) is the 2D pattern on the SLM used to produce the red curve, the random variations are explained in the text; (c) V(z) curves obtained using different pupil functions (green curve was produced by a pupil function which was constant over the whole aperture, the red and blue curves correspond to the pupils of the same color in (a).

Fig. 3
Fig. 3

Comparison between V(z) and V (zeff), the red line refers to the real V(z) curve and blue line refers to the effective V(z) calculated from V(α) (b) Upper subfigure shows the phase distributions imposed corresponding to defocuses of −4 (green curve) and 0 (red line) microns respectively. Lower subfigure shows the wrapped phase distribution corresponding to a defocus of −4 microns. For positive defocus the curves are inverted

Fig. 4
Fig. 4

(a) V(α) comparison between uncoated and ITO coated sample, the red line is the ITO coated case and blue line is the uncoated case; (b) is one wrapped pattern used in the experiment. The physical defocus, z0, was set to zero, that is the sample was in focus.

Fig. 5
Fig. 5

V(α) curves obtained with different amounts of physical defocus . The black line to the bottom green line, represent fixed physical defocuses of 0, −0.4, −0.8, −1.2, −1.6, −2 respectively. The curves are displaced along the y-axis by 0.2 units for clarity. Line order black (solid), red(dashed), magenta (dotted), blue (solid), cyan (dash), green (dotted).

Fig. 6
Fig. 6

(a) V(α) curves obtained with two different phase shifts of the reference, red curve refers to the non-phase shifting case and the blue line refers to the case where a shift of 90° on the reference beam is applied; (b) a phase profile pattern, the red curve is the original phase profile and blue curve refers to reference bean phase shifting of , above 20° incident angle the two curves are identical.

Fig. 7
Fig. 7

The effect of SLM misalignment on the quality of the V(α) curves. The SLM was misaligned by −0.01, 0, 0.01, 0.02 units of the back focal plane aperture from the lower green line to the upper magenta line. The curves are displaced along the y-axis by 0.2 units for clarity.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I(z)= | V(z) | 2 = | 0 2π 0 s max P in (s) P out (s)[ cos 2 ϕ r p (s)+ sin 2 ϕ r s (s) ]exp(2jnkzcosθ) sdsdϕ | 2
Δz= λ 2n(1cos θ p )
ψ(s)=α( 1 1 s 2 )=α( 1cosθ )
z eff = z 0 + α 2nk
ψ(s)={ α( 1 1 s 2 )+β, for s< s 1 α( 1 1 s 2 ), for s s 1

Metrics