Abstract

We present a comprehensive study of power output characteristics of random distributed feedback Raman fiber lasers. The calculated optimal slope efficiency of the backward wave generation in the one-arm configuration is shown to be as high as ~90% for 1 W threshold. Nevertheless, in real applications a presence of a small reflection at fiber ends can appreciably deteriorate the power performance. The developed numerical model well describes the experimental data.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
    [CrossRef]
  2. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A38(49), 10497–10535 (2005).
    [CrossRef]
  3. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys.4(5), 359–367 (2008).
    [CrossRef]
  4. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
    [CrossRef]
  5. A. M. R. Pinto, M. Bravo, M. Fernandez-Vallejo, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser,” Opt. Express19(12), 11906–11915 (2011).
    [CrossRef] [PubMed]
  6. A. R. Sarmani, M. H. Abu Bakar, A. A. Bakar, F. R. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express19(15), 14152–14159 (2011).
    [CrossRef] [PubMed]
  7. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
    [CrossRef] [PubMed]
  8. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010).
    [CrossRef]
  9. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
    [CrossRef] [PubMed]
  10. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
    [CrossRef]
  11. M. Pang, S. Xie, X. Bao, D. P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett.37(15), 3129–3131 (2012).
    [CrossRef] [PubMed]
  12. A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol.30(8), 1168–1172 (2012).
    [CrossRef]
  13. Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012).
    [CrossRef] [PubMed]
  14. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
    [CrossRef] [PubMed]
  15. J. Nuño del Campo, M. Alcon-Camas, and J. D. Ania-Castanon, “RIN transfer in random distributed feedback fiber lasers,” in Nonlinear Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper JM5A.7.
  16. N. Kurukitkoson, H. Sugahara, S. Turitsyn, O. N. Egorova, A. S. Kurkov, V. Paramonov, and E. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
    [CrossRef]
  17. O. N. Egorova, A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, and E. M. Dianov, “Effect of the spectral broadening of the first Stokes component on the efficiency of a two-stage Raman converter,” Quantum Electron.35(4), 335–338 (2005).
    [CrossRef]
  18. S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, “Experimental and numerical study of the switching dynamics of Raman fiber lasers,” Appl. Phys. B80(2), 177–183 (2005).
    [CrossRef]
  19. S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun.226(1-6), 329–335 (2003).
    [CrossRef]
  20. P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun.237(1-3), 201–212 (2004).
    [CrossRef]
  21. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
    [CrossRef] [PubMed]
  22. S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett.36(6), 790–792 (2011).
    [CrossRef] [PubMed]
  23. D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285(8), 2154–2160 (2012).
    [CrossRef]
  24. S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express19(9), 8394–8405 (2011).
    [CrossRef] [PubMed]
  25. D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett.36(18), 3617–3619 (2011).
    [CrossRef] [PubMed]
  26. S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett.37(4), 500–502 (2012).
    [CrossRef] [PubMed]
  27. Z. Xiong, N. Moore, Z. G. Li, and G. C. Lim, “10-W Raman fiber lasers at 1248 nm using phosphosilicate fibers,” J. Lightwave Technol.21(10), 2377–2381 (2003).
    [CrossRef]
  28. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, T. Taunay, C. Headley, and D. J. DiGiovanni, “Raman fiber laser with 81 W output power at 1480 nm,” Opt. Lett.35(18), 3069–3071 (2010).
    [CrossRef] [PubMed]
  29. V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett.29(22), 2596–2598 (2004).
    [CrossRef] [PubMed]
  30. Y. Zhao and S. Jackson, “Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres,” Opt. Commun.253(1-3), 172–176 (2005).
    [CrossRef]

2012 (6)

2011 (8)

S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express19(9), 8394–8405 (2011).
[CrossRef] [PubMed]

D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett.36(18), 3617–3619 (2011).
[CrossRef] [PubMed]

S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett.36(6), 790–792 (2011).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

A. M. R. Pinto, M. Bravo, M. Fernandez-Vallejo, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser,” Opt. Express19(12), 11906–11915 (2011).
[CrossRef] [PubMed]

A. R. Sarmani, M. H. Abu Bakar, A. A. Bakar, F. R. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express19(15), 14152–14159 (2011).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

2010 (5)

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
[CrossRef] [PubMed]

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, T. Taunay, C. Headley, and D. J. DiGiovanni, “Raman fiber laser with 81 W output power at 1480 nm,” Opt. Lett.35(18), 3069–3071 (2010).
[CrossRef] [PubMed]

2008 (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys.4(5), 359–367 (2008).
[CrossRef]

2005 (4)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A38(49), 10497–10535 (2005).
[CrossRef]

O. N. Egorova, A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, and E. M. Dianov, “Effect of the spectral broadening of the first Stokes component on the efficiency of a two-stage Raman converter,” Quantum Electron.35(4), 335–338 (2005).
[CrossRef]

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, “Experimental and numerical study of the switching dynamics of Raman fiber lasers,” Appl. Phys. B80(2), 177–183 (2005).
[CrossRef]

Y. Zhao and S. Jackson, “Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres,” Opt. Commun.253(1-3), 172–176 (2005).
[CrossRef]

2004 (2)

2003 (2)

Z. Xiong, N. Moore, Z. G. Li, and G. C. Lim, “10-W Raman fiber lasers at 1248 nm using phosphosilicate fibers,” J. Lightwave Technol.21(10), 2377–2381 (2003).
[CrossRef]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun.226(1-6), 329–335 (2003).
[CrossRef]

2001 (1)

N. Kurukitkoson, H. Sugahara, S. Turitsyn, O. N. Egorova, A. S. Kurkov, V. Paramonov, and E. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

Abu Bakar, M. H.

Adikan, F. R.

Ania-Castanon, J. D.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

Ania-Castañón, J. D.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Babin, S. A.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun.226(1-6), 329–335 (2003).
[CrossRef]

Bakar, A. A.

Bao, X.

Bednyakova, A. E.

Bravo, M.

Brinkmeyer, E.

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, “Experimental and numerical study of the switching dynamics of Raman fiber lasers,” Appl. Phys. B80(2), 177–183 (2005).
[CrossRef]

Bufetov, I. A.

Cao, H.

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A38(49), 10497–10535 (2005).
[CrossRef]

Chen, L.

Churkin, D. V.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285(8), 2154–2160 (2012).
[CrossRef]

D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett.36(18), 3617–3619 (2011).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun.226(1-6), 329–335 (2003).
[CrossRef]

Cierullies, S.

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, “Experimental and numerical study of the switching dynamics of Raman fiber lasers,” Appl. Phys. B80(2), 177–183 (2005).
[CrossRef]

Dalloz, N.

Dianov, E.

N. Kurukitkoson, H. Sugahara, S. Turitsyn, O. N. Egorova, A. S. Kurkov, V. Paramonov, and E. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

Dianov, E. M.

DiGiovanni, D. J.

DiMarcello, F.

Dvoyrin, V. V.

Egorova, O. N.

O. N. Egorova, A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, and E. M. Dianov, “Effect of the spectral broadening of the first Stokes component on the efficiency of a two-stage Raman converter,” Quantum Electron.35(4), 335–338 (2005).
[CrossRef]

N. Kurukitkoson, H. Sugahara, S. Turitsyn, O. N. Egorova, A. S. Kurkov, V. Paramonov, and E. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

El-Taher, A. E.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Fedoruk, M. P.

Fernandez-Vallejo, M.

Fleming, J.

Fotiadi, A. A.

Frazão, O.

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010).
[CrossRef]

Gorbunov, O. A.

Guryanov, A. N.

Harper, P.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

Headley, C.

Jackson, S.

Y. Zhao and S. Jackson, “Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres,” Opt. Commun.253(1-3), 172–176 (2005).
[CrossRef]

Jia, X. H.

Kablukov, S. I.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

Khopin, V. F.

Kobelke, J.

Krause, M.

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, “Experimental and numerical study of the switching dynamics of Raman fiber lasers,” Appl. Phys. B80(2), 177–183 (2005).
[CrossRef]

Kurkov, A. S.

S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express19(9), 8394–8405 (2011).
[CrossRef] [PubMed]

O. N. Egorova, A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, and E. M. Dianov, “Effect of the spectral broadening of the first Stokes component on the efficiency of a two-stage Raman converter,” Quantum Electron.35(4), 335–338 (2005).
[CrossRef]

N. Kurukitkoson, H. Sugahara, S. Turitsyn, O. N. Egorova, A. S. Kurkov, V. Paramonov, and E. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

Kurukitkoson, N.

N. Kurukitkoson, H. Sugahara, S. Turitsyn, O. N. Egorova, A. S. Kurkov, V. Paramonov, and E. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

Latkin, A. I.

Li, Z. G.

Lim, G. C.

Lopez-Amo, M.

Lu, Y.

Mahdi, M. A.

Mashinsky, V. M.

Medvedkov, O. I.

Monberg, E.

Moore, N.

Neustruev, V. B.

Nicholson, J. W.

Pang, M.

Paramonov, V.

N. Kurukitkoson, H. Sugahara, S. Turitsyn, O. N. Egorova, A. S. Kurkov, V. Paramonov, and E. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

Paramonov, V. M.

O. N. Egorova, A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, and E. M. Dianov, “Effect of the spectral broadening of the first Stokes component on the efficiency of a two-stage Raman converter,” Quantum Electron.35(4), 335–338 (2005).
[CrossRef]

Pinto, A. M. R.

Podivilov, E. V.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun.226(1-6), 329–335 (2003).
[CrossRef]

Randoux, S.

Rao, Y. J.

Renner, H.

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, “Experimental and numerical study of the switching dynamics of Raman fiber lasers,” Appl. Phys. B80(2), 177–183 (2005).
[CrossRef]

Salgansky, M. Y.

Santos, J. L.

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010).
[CrossRef]

Sarmani, A. R.

Schuster, K.

Sholokhov, E.

Shubin, A. V.

Smirnov, S. V.

Sugahara, H.

N. Kurukitkoson, H. Sugahara, S. Turitsyn, O. N. Egorova, A. S. Kurkov, V. Paramonov, and E. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

Suret, P.

Taunay, T.

Turitsyn, S.

N. Kurukitkoson, H. Sugahara, S. Turitsyn, O. N. Egorova, A. S. Kurkov, V. Paramonov, and E. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

Turitsyn, S. K.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express19(9), 8394–8405 (2011).
[CrossRef] [PubMed]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Vasiliev, S. A.

Vatnik, I. D.

Wang, Z. N.

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys.4(5), 359–367 (2008).
[CrossRef]

Wisk, P.

Xie, S.

Xiong, Z.

Yan, M. F.

Yang, Z. X.

Zhang, W. L.

Zhao, Y.

Y. Zhao and S. Jackson, “Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres,” Opt. Commun.253(1-3), 172–176 (2005).
[CrossRef]

Zhou, D. P.

Zhu, J. M.

Appl. Phys. B (2)

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010).
[CrossRef]

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, “Experimental and numerical study of the switching dynamics of Raman fiber lasers,” Appl. Phys. B80(2), 177–183 (2005).
[CrossRef]

Electron. Lett. (1)

N. Kurukitkoson, H. Sugahara, S. Turitsyn, O. N. Egorova, A. S. Kurkov, V. Paramonov, and E. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

J. Lightwave Technol. (2)

J. Phys. A (1)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A38(49), 10497–10535 (2005).
[CrossRef]

Nat. Photonics (1)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys.4(5), 359–367 (2008).
[CrossRef]

Opt. Commun. (4)

S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun.226(1-6), 329–335 (2003).
[CrossRef]

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun.237(1-3), 201–212 (2004).
[CrossRef]

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285(8), 2154–2160 (2012).
[CrossRef]

Y. Zhao and S. Jackson, “Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres,” Opt. Commun.253(1-3), 172–176 (2005).
[CrossRef]

Opt. Express (6)

Opt. Lett. (8)

M. Pang, S. Xie, X. Bao, D. P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett.37(15), 3129–3131 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
[CrossRef] [PubMed]

S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett.36(6), 790–792 (2011).
[CrossRef] [PubMed]

D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett.36(18), 3617–3619 (2011).
[CrossRef] [PubMed]

S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett.37(4), 500–502 (2012).
[CrossRef] [PubMed]

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, T. Taunay, C. Headley, and D. J. DiGiovanni, “Raman fiber laser with 81 W output power at 1480 nm,” Opt. Lett.35(18), 3069–3071 (2010).
[CrossRef] [PubMed]

V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett.29(22), 2596–2598 (2004).
[CrossRef] [PubMed]

Phys. Rev. A (2)

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

Quantum Electron. (1)

O. N. Egorova, A. S. Kurkov, O. I. Medvedkov, V. M. Paramonov, and E. M. Dianov, “Effect of the spectral broadening of the first Stokes component on the efficiency of a two-stage Raman converter,” Quantum Electron.35(4), 335–338 (2005).
[CrossRef]

Other (1)

J. Nuño del Campo, M. Alcon-Camas, and J. D. Ania-Castanon, “RIN transfer in random distributed feedback fiber lasers,” in Nonlinear Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper JM5A.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

One-arm random distributed feedback fiber laser.

Fig. 2
Fig. 2

(a) Numerically (symbols) and analytically (line) calculated generation threshold of first Stokes wave. (b) Numerically calculated generation threshold of second Stokes wave with (blue) and without (black) parasitic reflections of RL = RF = 4·10−5 at the fiber ends.

Fig. 3
Fig. 3

First Stokes (forward – red, backward - black) and Second Stokes (backward - blue) output powers for the random DFB laser based on 10.7 km TrueWave fiber (a) and 2 km 1060-XP fiber (b): experimental data (boxes), numerical calculation without (dash) and with (solid) parasitic reflection.

Fig. 4
Fig. 4

(a) The forward and backward output powers for different fiber lengths (red – forward waves, black – backward waves). (b) The typical longitudinal power distribution of the pump wave and generated forward and backward wave. Pump power is 4 W. Calculations are made for TrueWave fiber and lasing at 1.2 μm. Inset: LRS dependence on pump power for different fiber lengths.

Fig. 5
Fig. 5

(a) Generation efficiency of the forward and backward waves over fiber length and (b) of backward wave over Raman gain and fiber losses. Calculations are for TrueWave fiber of 11 km.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ ( α P +d/dz) P P + = g S P P + ( P S + + P S +4h v S Δv) v P v S ( α S ±d/dz) P S ± = g S P P + ( P S ± +2h v S Δv)+ ε S P S g 2S P S ± ( P 2S + + P 2S +4h v 2S Δv) v S v 2S ( α 2S ±d/dz) P 2S ± = g 2S ( P S + + P S )( P 2S ± +2h v 2S Δv)+ ε 2S P 2S
ε 2 [ 0 L dx 0 Lx dl exp(2 α s l+2 g R x x+l P p (v)dv ) ]=1

Metrics