Abstract

We describe and demonstrate the use of a feedback control system to thermally stabilize a silicon microring modulator subjected to a thermally volatile environment. Furthermore, we establish power monitoring as an effective and appropriate mechanism to infer the temperature drift of a microring modulator. Our demonstration shows that a high-performance silicon microring-based device, normally inoperable in thermally volatile environments, can maintain error-free performance when a feedback control system is implemented.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  2. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett.10(4), 549–551 (1998).
    [CrossRef]
  3. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express17(25), 22271–22280 (2009).
    [CrossRef] [PubMed]
  4. F. Xia, L. Sekaric, and Y. A. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
    [CrossRef]
  5. K. Preston, Y. H. D. Lee, M. Zhang, and M. Lipson, “Waveguide-integrated telecom-wavelength photodiode in deposited silicon,” Opt. Lett.36(1), 52–54 (2011).
    [CrossRef] [PubMed]
  6. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
    [CrossRef]
  7. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kaertner, R. Ram, V. Stojanovic, and K. Asanovic, “Building manycore processor to DRAM networks with monolithic silicon photonics,” IEEE Symposium on High-Performance Interconnects, 21–30 (2008).
  8. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam)34(1), 149–154 (1967).
    [CrossRef]
  9. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
    [CrossRef]
  10. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic Stabilization of a Microring Modulator Under Thermal Perturbation,” Proc. Optical Fiber Communication Conference (Optical Society of America, 2012), paper OW4F.2.
  11. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett.37(12), 2253–2255 (2012).
    [CrossRef] [PubMed]
  12. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express17(17), 14627–14633 (2009).
    [CrossRef] [PubMed]
  13. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThJ3.
  14. C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express19(6), 5143–5148 (2011).
    [CrossRef] [PubMed]
  15. A. L. Lentine, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Active wavelength control of silicon microphotonic resonant modulators,” Proc. Optical Interconnects Conference (IEEE, 2012), paper TuC5.
  16. E. Timurdogan, A. Biberman, D. C. Trotter, and C. Sun, M. Moresco, V. Stojanovic, M. R. Watts, “Automated Wavelength Recovery for Microring Resonators,” Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper CM2M.1.
  17. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express17(17), 15248–15256 (2009).
    [CrossRef] [PubMed]
  18. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
    [CrossRef]
  19. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  20. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett.33(19), 2185–2187 (2008).
    [CrossRef] [PubMed]
  21. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express19(21), 20435–20443 (2011).
    [CrossRef] [PubMed]
  22. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Integrated CMOS Compatible Low Power 10Gbps Silicon Photonic Heater-Modulator,” Proc. Optical Fiber Communication Conference (Optical Society of America, 2012), paper OW4I.5.
  23. D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and Tuning Micro-ring Properties Using Defect-Enhanced Silicon Photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
    [CrossRef]
  24. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
    [CrossRef] [PubMed]
  25. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett.16(11), 2514–2516 (2004).
    [CrossRef]
  26. H. Yu, Y. Shi, L. He, and T. Karnik, “Thermal Via Allocation for 3-D ICs Considering Temporally and Spatially Variant Thermal Power,” IEEE Trans.VLSI Systems16(12), 1609–1619 (2008).
    [CrossRef]

2012

B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett.37(12), 2253–2255 (2012).
[CrossRef] [PubMed]

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and Tuning Micro-ring Properties Using Defect-Enhanced Silicon Photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

2011

2009

2008

S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett.33(19), 2185–2187 (2008).
[CrossRef] [PubMed]

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

H. Yu, Y. Shi, L. He, and T. Karnik, “Thermal Via Allocation for 3-D ICs Considering Temporally and Spatially Variant Thermal Power,” IEEE Trans.VLSI Systems16(12), 1609–1619 (2008).
[CrossRef]

2007

2006

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

2005

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

2004

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett.16(11), 2514–2516 (2004).
[CrossRef]

1998

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett.10(4), 549–551 (1998).
[CrossRef]

1967

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam)34(1), 149–154 (1967).
[CrossRef]

Apsel, A. B.

Baets, R.

Bergman, K.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Bogaerts, W.

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Chen, L.

Chu, S. T.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett.10(4), 549–551 (1998).
[CrossRef]

Cunningham, J. E.

De La Rue, R. M.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and Tuning Micro-ring Properties Using Defect-Enhanced Silicon Photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

Dokania, R. K.

Dumon, P.

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett.10(4), 549–551 (1998).
[CrossRef]

Geis, M. W.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett.16(11), 2514–2516 (2004).
[CrossRef]

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett.10(4), 549–551 (1998).
[CrossRef]

Grein, M. E.

Guha, B.

Han, X.

Haus, H. A.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett.10(4), 549–551 (1998).
[CrossRef]

He, L.

H. Yu, Y. Shi, L. He, and T. Karnik, “Thermal Via Allocation for 3-D ICs Considering Temporally and Spatially Variant Thermal Power,” IEEE Trans.VLSI Systems16(12), 1609–1619 (2008).
[CrossRef]

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett.10(4), 549–551 (1998).
[CrossRef]

Jessop, P. E.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and Tuning Micro-ring Properties Using Defect-Enhanced Silicon Photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

Jian, X.

Karnik, T.

H. Yu, Y. Shi, L. He, and T. Karnik, “Thermal Via Allocation for 3-D ICs Considering Temporally and Spatially Variant Thermal Power,” IEEE Trans.VLSI Systems16(12), 1609–1619 (2008).
[CrossRef]

Kimerling, L. C.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett.10(4), 549–551 (1998).
[CrossRef]

Knights, A. P.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and Tuning Micro-ring Properties Using Defect-Enhanced Silicon Photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

Krishnamoorthy, A. V.

Lee, Y. H. D.

Lennon, D. M.

Li, G.

Li, Z.

Lipson, M.

Lira, H. L. R.

Little, B. E.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett.10(4), 549–551 (1998).
[CrossRef]

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Logan, D. F.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and Tuning Micro-ring Properties Using Defect-Enhanced Silicon Photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

Luo, Y.

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett.16(11), 2514–2516 (2004).
[CrossRef]

Manipatruni, S.

Morthier, G.

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Poitras, C. B.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Preston, K.

Qiu, C.

Raj, K.

Schmidt, B.

Sekaric, L.

F. Xia, L. Sekaric, and Y. A. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Shakya, J.

Sherwood-Droz, N.

Shi, Y.

H. Yu, Y. Shi, L. He, and T. Karnik, “Thermal Via Allocation for 3-D ICs Considering Temporally and Spatially Variant Thermal Power,” IEEE Trans.VLSI Systems16(12), 1609–1619 (2008).
[CrossRef]

Shu, J.

Shubin, I.

Sorel, M.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and Tuning Micro-ring Properties Using Defect-Enhanced Silicon Photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

Spector, S. J.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett.16(11), 2514–2516 (2004).
[CrossRef]

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett.10(4), 549–551 (1998).
[CrossRef]

Teng, J.

Thacker, H.

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett.10(4), 549–551 (1998).
[CrossRef]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam)34(1), 149–154 (1967).
[CrossRef]

Velha, P.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and Tuning Micro-ring Properties Using Defect-Enhanced Silicon Photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

Vlasov, Y. A.

F. Xia, L. Sekaric, and Y. A. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Williamson, R. C.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett.16(11), 2514–2516 (2004).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Y. A. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Xu, Q.

Yao, J.

Yoon, J. U.

Yu, H.

H. Yu, Y. Shi, L. He, and T. Karnik, “Thermal Via Allocation for 3-D ICs Considering Temporally and Spatially Variant Thermal Power,” IEEE Trans.VLSI Systems16(12), 1609–1619 (2008).
[CrossRef]

Zhang, H.

Zhang, M.

Zhang, X.

Zhao, M.

Zheng, X.

Appl. Phys. Lett.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and Tuning Micro-ring Properties Using Defect-Enhanced Silicon Photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett.16(11), 2514–2516 (2004).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett.10(4), 549–551 (1998).
[CrossRef]

IEEE Trans. Comput.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

IEEE Trans.VLSI Systems

H. Yu, Y. Shi, L. He, and T. Karnik, “Thermal Via Allocation for 3-D ICs Considering Temporally and Spatially Variant Thermal Power,” IEEE Trans.VLSI Systems16(12), 1609–1619 (2008).
[CrossRef]

Nat. Photonics

F. Xia, L. Sekaric, and Y. A. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Nature

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express17(25), 22271–22280 (2009).
[CrossRef] [PubMed]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express17(17), 14627–14633 (2009).
[CrossRef] [PubMed]

C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express19(6), 5143–5148 (2011).
[CrossRef] [PubMed]

L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express17(17), 15248–15256 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15(2), 430–436 (2007).
[CrossRef] [PubMed]

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express19(21), 20435–20443 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Physica (Amsterdam)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam)34(1), 149–154 (1967).
[CrossRef]

Other

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kaertner, R. Ram, V. Stojanovic, and K. Asanovic, “Building manycore processor to DRAM networks with monolithic silicon photonics,” IEEE Symposium on High-Performance Interconnects, 21–30 (2008).

A. L. Lentine, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Active wavelength control of silicon microphotonic resonant modulators,” Proc. Optical Interconnects Conference (IEEE, 2012), paper TuC5.

E. Timurdogan, A. Biberman, D. C. Trotter, and C. Sun, M. Moresco, V. Stojanovic, M. R. Watts, “Automated Wavelength Recovery for Microring Resonators,” Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper CM2M.1.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” Proc. Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThJ3.

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic Stabilization of a Microring Modulator Under Thermal Perturbation,” Proc. Optical Fiber Communication Conference (Optical Society of America, 2012), paper OW4F.2.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Integrated CMOS Compatible Low Power 10Gbps Silicon Photonic Heater-Modulator,” Proc. Optical Fiber Communication Conference (Optical Society of America, 2012), paper OW4I.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Scanning-electron-microscope (SEM) image of the microring modulator. (b) Schematic outlining the testing and implementation of a feedback system for thermally stabilizing the microring modulator.

Fig. 2
Fig. 2

(a) Generation of thermal fluctuations using a visible laser. (b) Measured bandwidth of the thermal fluctuations produced by the visible laser.

Fig. 3
Fig. 3

(a) The mean optical power is given as half of the power between the two bit-states of the modulated resonance. (b) Measured mean optical power of the 10-Gb/s microring-modulated optical signal versus wavelength. Eye diagrams of the 10 Gb/s signal are incrementally shown at points on the wavelength scan. The top x-axis gives the equivalent range when sweeping the temperature.

Fig. 4
Fig. 4

Experimental setup.

Fig. 5
Fig. 5

(a) The DC bias of the modulator, demonstrating how the feedback system dynamically adjusts the DC bias to counteract thermal fluctuations of magnitude 4 K and 8 K. (b) The voltage from the TIA following the photodiode (used to infer the mean modulation power) when the modulator is exposed to thermal fluctuations of magnitude 4 K, with and without the feedback system implemented. (c) The voltage on the TIA following the photodiode when the modulator is exposed to thermal fluctuations of magnitude 8 K, with and without the feedback system implemented.

Fig. 6
Fig. 6

Eye diagrams of the 10-Gb/s microring modulation when subjected to temperature fluctuations of magnitude (a) 0 K (b) 4 K (c) and 8 K with no implemented feedback system. Similarly, eye diagrams of the 10-Gb/s microring modulation when subjected to temperature fluctuations of magnitude (d) 0 K (e) 4 K (f) and 8 K but with a feedback system thermally stabilizing the microring modulator.

Fig. 7
Fig. 7

Bit-error-rate (BER) measurements of the 10-Gb/s microring-modulated signal. These measurements correspond to the eye diagrams in Fig. 6(a), 6(d), 6(e), and 6(f).

Metrics