Abstract

We designed and fabricated a low-crosstalk seven-core fiber with transmission losses of 0.17 dB/km or lower, effective areas larger than 120 μm2, and a total mean crosstalk to the center core of –53 dB after 6.99-km propagation (equivalent to −42.5 dB after 80 km), at 1550 nm. We also investigated the signal-to-noise ratio (SNR) achievable in uncoupled multi-core transmission systems by regarding the crosstalk as a virtual additive white Gaussian noise. The SNR under existence of crosstalk in the fabricated multi-core fiber (MCF) was estimated to be 2.4 dB higher than that in a standard single-mode fiber (SSMF) in the case of 80-km span, and 2.9 dB higher in the case of 100-km span; which are the best values among MCFs ever reported, to the best of our knowledge. The SNR penalties from crosstalk in this MCF were calculated to be 0.4 dB for 80-km span and 0.2 dB for 100-km span. We also investigated SNR penalty from crosstalk in the more ordinary case of an MCF with SSMF cores, and found that the total mean crosstalk to the worst core after one 80-km span should be less than about −47 dB for 0.1-dB penalty, about −40 dB for 0.5-dB penalty, and about −36 dB for 1-dB penalty.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, “New generation optical infrastructure technologies: EXAT initiative towards 2020 and beyond,” in OptoElectron. Commun. Conf. (OECC) (2009), paper FT4.
  2. M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express6(2), 98–103 (2009).
    [CrossRef]
  3. J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Statistics of crosstalk in bent multicore fibers,” Opt. Express18(14), 15122–15129 (2010).
    [CrossRef] [PubMed]
  4. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. CommunE94.B(2), 409–416 (2011).
    [CrossRef]
  5. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express19(17), 16576–16592 (2011).
    [CrossRef] [PubMed]
  6. P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011).
    [CrossRef]
  7. K. Imamura, K. Mukasa, and R. Sugizaki, “Trench assisted multi-core fiber with large Aeff over 100 µm2 and low attenuation loss,” in Eur. Conf. Opt. Commun. (ECOC) (2011), paper Mo.1.LeCervin.1.
  8. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express19(26), B543–B550 (2011).
    [CrossRef] [PubMed]
  9. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
    [CrossRef] [PubMed]
  10. B. Yao, K. Ohsono, N. Shiina, F. Koji, A. Hongo, E. H. Sekiya, and K. Saito, “Reduction of crosstalk by hole-walled multi-core fibers,” in Opt. Fiber Commun. Conf. (OFC) (2012), paper OM2D.5.
  11. H. Takara, H. Ono, Y. Abe, H. Masuda, K. Takenaga, S. Matsuo, H. Kubota, K. Shibahara, T. Kobayashi, and Y. Miaymoto, “1000-km 7-core fiber transmission of 10 x 96-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber,” Opt. Express20(9), 10100–10105 (2012).
    [CrossRef] [PubMed]
  12. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-loss and large-Aeff multi-core fiber for SNR enhancement,” in Eur. Conf. Opt. Commun. (ECOC) (2012), paper Mo.1.F.3.
  13. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Characterization of crosstalk in ultra-low-crosstalk multi-core fiber,” J. Lightwave Technol.30(4), 583–589 (2012).
    [CrossRef]

2012 (2)

2011 (5)

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. CommunE94.B(2), 409–416 (2011).
[CrossRef]

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011).
[CrossRef]

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express19(17), 16576–16592 (2011).
[CrossRef] [PubMed]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
[CrossRef] [PubMed]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express19(26), B543–B550 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express6(2), 98–103 (2009).
[CrossRef]

Abe, Y.

Arakawa, Y.

Bosco, G.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011).
[CrossRef]

Carena, A.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011).
[CrossRef]

Curri, V.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011).
[CrossRef]

Fini, J. M.

Forghieri, F.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011).
[CrossRef]

Guan, N.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. CommunE94.B(2), 409–416 (2011).
[CrossRef]

Hayashi, T.

Kobayashi, T.

Kokubun, Y.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express6(2), 98–103 (2009).
[CrossRef]

Koshiba, M.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. CommunE94.B(2), 409–416 (2011).
[CrossRef]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express19(26), B543–B550 (2011).
[CrossRef] [PubMed]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
[CrossRef] [PubMed]

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express6(2), 98–103 (2009).
[CrossRef]

Kubota, H.

Masuda, H.

Matsuo, S.

Miaymoto, Y.

Ono, H.

Poggiolini, P.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011).
[CrossRef]

Saitoh, K.

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
[CrossRef] [PubMed]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express19(26), B543–B550 (2011).
[CrossRef] [PubMed]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. CommunE94.B(2), 409–416 (2011).
[CrossRef]

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express6(2), 98–103 (2009).
[CrossRef]

Sasaki, T.

Sasaki, Y.

Sasaoka, E.

Shibahara, K.

Shimakawa, O.

Takara, H.

Takenaga, K.

Taniagwa, S.

Tanigawa, S.

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express19(26), B543–B550 (2011).
[CrossRef] [PubMed]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. CommunE94.B(2), 409–416 (2011).
[CrossRef]

Taru, T.

Taunay, T. F.

Yan, M. F.

Zhu, B.

IEEE Photon. Technol. Lett. (1)

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011).
[CrossRef]

IEICE Electron. Express (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express6(2), 98–103 (2009).
[CrossRef]

IEICE Trans. Commun (1)

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. CommunE94.B(2), 409–416 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (4)

Opt. Lett. (1)

Other (4)

K. Imamura, K. Mukasa, and R. Sugizaki, “Trench assisted multi-core fiber with large Aeff over 100 µm2 and low attenuation loss,” in Eur. Conf. Opt. Commun. (ECOC) (2011), paper Mo.1.LeCervin.1.

B. Yao, K. Ohsono, N. Shiina, F. Koji, A. Hongo, E. H. Sekiya, and K. Saito, “Reduction of crosstalk by hole-walled multi-core fibers,” in Opt. Fiber Commun. Conf. (OFC) (2012), paper OM2D.5.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-loss and large-Aeff multi-core fiber for SNR enhancement,” in Eur. Conf. Opt. Commun. (ECOC) (2012), paper Mo.1.F.3.

T. Morioka, “New generation optical infrastructure technologies: EXAT initiative towards 2020 and beyond,” in OptoElectron. Commun. Conf. (OECC) (2009), paper FT4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A design profile of relative refractive index difference Δ. A refractive index of the cladding was taken as the reference of the relative refractive index difference Δ.

Fig. 2
Fig. 2

A relationship between the aggregate power coupling coefficient from the center core to six outer cores and the excess loss in the center core induced by the crosstalk.

Fig. 3
Fig. 3

A cross-section of the fabricated MCF.

Fig. 4
Fig. 4

Transmission loss spectra of the individual cores of the fabricated MCF.

Fig. 5
Fig. 5

Mean crosstalk between neighboring cores of the fabricated MCF.

Fig. 6
Fig. 6

Dependences of SNR penalty due to XT and of relative SNR of MCFs compared to SSMF (ΔSNRMC), on the SNR without XT (SNRSC) and the worst-core µXT after one span, (a) for Ls = 80 km and (b) for Ls = 100 km. *Dot-dashed lines: isolines of SNR penalty due to XT, solid curves: isolines of ΔSNRMC, dashed lines: SNRSC,max of SSMF.

Fig. 7
Fig. 7

Relationships between the worst-core µXT after one span and the SNR penalty due to XT for several combinations of system parameters in case of Ls = 80 km.

Tables (3)

Tables Icon

Table 1 Optical properties of the fabricated MCF.

Tables Icon

Table 2 Measured mean crosstalk of the fabricated MCF for L = 6.99 km and R = 140 mm.

Tables Icon

Table 3 Characteristics of SSMF, reported MCFs, and the fabricated MCF at 1550 nm.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

μ XT ηL κ 2 2R βΛ L,( μ XT <~0.01 ),
α XT,n mn η mn ,
α XT,dB = 10 ln10 6η,
SNR SC = P Tx,ch P ASE | B n = R s + P NLI | B n = R s ,
P ASE = N s F( e α L s 1 )hν B n ,
P NLI a NLI P Tx,ch 3 ,
a NLI ( 2 3 ) 3 N s γ 2 L eff ln( π 2 | β 2 | L eff B WDM 2 ) π| β 2 | R s 3 B n ,
SNR MC = P Tx,ch P XT P ASE | B n = R s + P NLI | B n = R s + P XT P Tx,ch P ASE | B n = R s + P NLI | B n = R s + P XT ,
P XT μ XT P Tx,ch .
μ XT,WC η WC N s L s ,( μ XT,WC <~0.01),
η WC N c η,
SNR MC 1 SNR SC 1 + μ XT,WC SNR SC 1 + η WC N s L s .
SNR SC SNR MC 1+ SNR SC μ XT,WC .
SNR SC,max = [ 3 ( P ASE 2 ) 2 3 a NLI 1 3 ] 1 | B n = R s { [ ( e α L s 1 ) 2 3 ( γ L eff ) 2 3 ( | β 2 | L eff ) 1 3 ] [ ln( π 2 | β 2 | L eff B WDM 2 ) ] 1 3 [ ( 2 π ) 1 3 N s ( Fhν ) 2 3 ] } 1 [ ( e α L s 1 ) 2 3 ( γ L eff ) 2 3 ( | β 2 | L eff ) 1 3 ] 1 C system N s ,
SNR SC,max,dB 1 3 [ 10 log 10 ( | β 2 | L eff )20 log 10 ( γ L eff )2 α dB L s ] +10log 10 C system N s .
SNR MC,max ( SNR SC,max 1 + μ XT,WC ) 1 { [ ( e α L s 1 ) 2 3 ( γ L eff ) 2 3 ( | β 2 | L eff ) 1 3 ] N s C system + μ XT,WC } 1 { [ ( e α L s 1 ) 2 3 ( γ L eff ) 2 3 ( | β 2 | L eff ) 1 3 ] 1 C system + η WC L s } 1 1 N s .
SNR SC,max SNR MC,max 1+ SNR SC,max μ XT,WC 1+ SNR SC,max | N s =1 N s η WC N s L s 1+( SNR SC,max | N s =1 )( η WC L s ).

Metrics