Abstract

Characteristics of few-mode multi-core fiber (FM-MCF) were numerically analyzed and experimentally confirmed. The cores of FM-MCF were designed to support transmission of LP01 and LP11 modes from the point of bending loss of LP11 and LP21 modes. Inter-core crosstalk between LP11 mode was calculated to determine core pitch of fibers. It was confirmed that the fabricated fibers was two-mode transmission over C-band and L-band with the effective area of LP01 mode of about 110 μm2 at 1550 nm. The crosstalk of the fibers was estimated to be smaller than −30 dB at 1550 nm after 100-km propagation. The crosstalk dependence on wavelength was also measured and matched well with the simulated results.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, “New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond,” in Proceedings of 15th OptoElectronics and Communications Conference (Institute of Electrical and Electronics Engineers, 2009), paper FT4.
  2. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
    [CrossRef] [PubMed]
  3. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper PDP5C.1.
  4. M. Salsi, C. Koebele, G. Charlet, and S. Bigo, “Mode division multiplexed transmission with a weakly coupled few-mode fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OTu2C.5.
  5. K. Takenaga, Y. Sasaki, N. Guan, S. Matsuo, M. Kasahara, K. Saitoh, and M. Koshiba, “A large-effective-area few-mode multi-core fiber,” IEEE Photon. Technol. Lett.24(21), 1941–1944 (2012).
    [CrossRef]
  6. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002).
    [CrossRef]
  7. R. Maruyama, N. Kuwaki, S. Matsuo, K. Sato, and M. Ohashi, “Mode dispersion compensating optical transmission line composed of two-mode optical fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper JW2A.3.
  8. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multicore fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun.E94-B(2), 409–416 (2011).
    [CrossRef]
  9. T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fiber due to fiber bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Institute of Electrical and Electronics Engineers, 2010), paper We.8.F.6.

2012

K. Takenaga, Y. Sasaki, N. Guan, S. Matsuo, M. Kasahara, K. Saitoh, and M. Koshiba, “A large-effective-area few-mode multi-core fiber,” IEEE Photon. Technol. Lett.24(21), 1941–1944 (2012).
[CrossRef]

2011

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multicore fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun.E94-B(2), 409–416 (2011).
[CrossRef]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
[CrossRef] [PubMed]

2002

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002).
[CrossRef]

Arakawa, Y.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multicore fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun.E94-B(2), 409–416 (2011).
[CrossRef]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
[CrossRef] [PubMed]

Guan, N.

K. Takenaga, Y. Sasaki, N. Guan, S. Matsuo, M. Kasahara, K. Saitoh, and M. Koshiba, “A large-effective-area few-mode multi-core fiber,” IEEE Photon. Technol. Lett.24(21), 1941–1944 (2012).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multicore fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun.E94-B(2), 409–416 (2011).
[CrossRef]

Kasahara, M.

K. Takenaga, Y. Sasaki, N. Guan, S. Matsuo, M. Kasahara, K. Saitoh, and M. Koshiba, “A large-effective-area few-mode multi-core fiber,” IEEE Photon. Technol. Lett.24(21), 1941–1944 (2012).
[CrossRef]

Koshiba, M.

K. Takenaga, Y. Sasaki, N. Guan, S. Matsuo, M. Kasahara, K. Saitoh, and M. Koshiba, “A large-effective-area few-mode multi-core fiber,” IEEE Photon. Technol. Lett.24(21), 1941–1944 (2012).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multicore fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun.E94-B(2), 409–416 (2011).
[CrossRef]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002).
[CrossRef]

Matsuo, S.

K. Takenaga, Y. Sasaki, N. Guan, S. Matsuo, M. Kasahara, K. Saitoh, and M. Koshiba, “A large-effective-area few-mode multi-core fiber,” IEEE Photon. Technol. Lett.24(21), 1941–1944 (2012).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multicore fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun.E94-B(2), 409–416 (2011).
[CrossRef]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
[CrossRef] [PubMed]

Saitoh, K.

K. Takenaga, Y. Sasaki, N. Guan, S. Matsuo, M. Kasahara, K. Saitoh, and M. Koshiba, “A large-effective-area few-mode multi-core fiber,” IEEE Photon. Technol. Lett.24(21), 1941–1944 (2012).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multicore fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun.E94-B(2), 409–416 (2011).
[CrossRef]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002).
[CrossRef]

Sasaki, Y.

K. Takenaga, Y. Sasaki, N. Guan, S. Matsuo, M. Kasahara, K. Saitoh, and M. Koshiba, “A large-effective-area few-mode multi-core fiber,” IEEE Photon. Technol. Lett.24(21), 1941–1944 (2012).
[CrossRef]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
[CrossRef] [PubMed]

Takenaga, K.

K. Takenaga, Y. Sasaki, N. Guan, S. Matsuo, M. Kasahara, K. Saitoh, and M. Koshiba, “A large-effective-area few-mode multi-core fiber,” IEEE Photon. Technol. Lett.24(21), 1941–1944 (2012).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multicore fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun.E94-B(2), 409–416 (2011).
[CrossRef]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
[CrossRef] [PubMed]

Taniagwa, S.

Tanigawa, S.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multicore fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun.E94-B(2), 409–416 (2011).
[CrossRef]

IEEE J. Quantum Electron.

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Takenaga, Y. Sasaki, N. Guan, S. Matsuo, M. Kasahara, K. Saitoh, and M. Koshiba, “A large-effective-area few-mode multi-core fiber,” IEEE Photon. Technol. Lett.24(21), 1941–1944 (2012).
[CrossRef]

IEICE Trans. Commun.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multicore fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun.E94-B(2), 409–416 (2011).
[CrossRef]

Opt. Lett.

Other

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fiber due to fiber bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Institute of Electrical and Electronics Engineers, 2010), paper We.8.F.6.

T. Morioka, “New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond,” in Proceedings of 15th OptoElectronics and Communications Conference (Institute of Electrical and Electronics Engineers, 2009), paper FT4.

R. Maruyama, N. Kuwaki, S. Matsuo, K. Sato, and M. Ohashi, “Mode dispersion compensating optical transmission line composed of two-mode optical fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper JW2A.3.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper PDP5C.1.

M. Salsi, C. Koebele, G. Charlet, and S. Bigo, “Mode division multiplexed transmission with a weakly coupled few-mode fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OTu2C.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Structural parameter dependence of Aeff of (a) LP01 mode and (b) LP11 mode.

Fig. 2
Fig. 2

Simulated inter-core 100-km crosstalk as a function of core pitch assuming a = 6.47 μm and Δ = 0.45%.

Fig. 3
Fig. 3

Crosssection of the Fiber A.

Fig. 4
Fig. 4

The NFP at 1550 nm of Fiber B (a) without bends and (b) with bends.

Fig. 5
Fig. 5

Measurement system of higher mode crosstalk.

Fig. 6
Fig. 6

Measurement procedure of XT11-11.

Fig. 7
Fig. 7

Results of measured XT11-11 of (a) Fiber A, (b) Fiber B and (c) Fiber C.

Fig. 8
Fig. 8

The comparison of 100-km crosstalk estimation from measured results and simulation results as a function of core pitch.

Fig. 9
Fig. 9

Wavelength dependence of inter-core crosstalk (a) from core 1 to core 2 and (b) from core 1 to core 4.

Fig. 10
Fig. 10

Measurement setup for measuring wavelength dependence of inter-core crosstalk.

Tables (2)

Tables Icon

Table 1 Structural parameters of fabricated fibers

Tables Icon

Table 2 Measurement results of LP01 mode

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

X T 1111 =10log( P kLP11 / P jLP11 ) =10log( P k /( P j P j ')).

Metrics