Abstract

DFTS-OFDM has been proposed recently as an alternative to coherent optical OFDM due to its improved transmission performance. This paper proposes spectral shaping for DFTS-OFDM which reduces the PAPR leading to further improvement in nonlinear tolerance. It is shown that for both SSMF and LEAF, the optimized spectrally shaped DFTS-OFDM outperforms DFTS-OFDM for dispersion managed and unmanaged links by ~10.8% and ~6.8%, respectively. The number of bands and the excess bandwidth parameters are also investigated to optimize the transmission performance.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jansen, “Multi-carrier approaches for next-generation transmission: why, where and how?” in Proc Optical Fiber Communication (OFC 2012), tutorial, OTh1B1, Los Angeles, CA, (March 2012).
  2. S. Zhang, M. F. Huang, F. Yaman, E. Mateo, D. Qian, Y. Zhang, L. Xu, Y. Shao, I. Djordjevic, T. Wang, Y. Inada, T. Inoue, T. Ogata, and Y. Aoki, “40x117Gb/s PDM-16QAM OFDM transmission over 10,180 km at 25GHz channel spacing with soft-decision LDPC coding and nonlinearity compensation,” in Proc. Optical Fiber Communication (OFC 2012), PDP5C.4, Los Angeles, CA, (March 2012).
  3. K. Forozesh, S. L. Jansen, S. Randel, I. Morita, and H. Tanaka, “The influence of the dispersion map in coherent optical OFDM transmission systems,” in Proc. LEOS Summer Topical Meetings (2008), WC2.4, Acapulco, Mexico, (July 2008).
  4. L. B. Du and A. J. Lowery, “ Fiber Nonlinearity Compensation for CO-OFDM Systems with Periodic Dispersion Maps, ” in Proc. Optical Fiber Telecommunications (OFC 2009), OTuO1, San Diego, CA, (March 2010).
  5. S. Adhikari, S. L. Jansen, D. van den Borne, A. G. Striegler, and W. Rosenkranz, “PDM-OFDM for upgrade scenarios: An investigation of OFDM-induced XPM on 42.8-Gb/s DPSK over SSMF and LEAF,” in Proc. Optical Fiber Telecommunications (OFC 2009), OTuL5, San Diego, CA, (March 2010).
  6. B. Goebel, S. Hellerbrand, and N. Hanik, “Link-aware precoding for nonlinear optical OFDM transmission,” in Proc. Optical Fiber Communication (OFC 2010), OTuE4, San Diego, CA, (March 2012).
  7. T. Jiang and Y. Wu, “An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals,” IEEE Trans. Broadcast54, 256–268 (2008).
  8. A. J. Lowery, “Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM,” Opt. Express15(20), 12965–12970 (2007).
    [CrossRef] [PubMed]
  9. A. Diaz, A. Napoli, S. Adhikari, Z. Maalej, A. P. Lobato Polo, M. Kuschnerov, and J. Prat, “Analysis of back-propagation and RF pilot tone based nonlinearity compensation for a 9x224Gb/s POLMUX- 16QAM system,” in Proc. Optical Fiber Communication (OFC 2012), OTh3C.5, Los Angeles, CA, (March 2012).
  10. L. B. Du and A. J. Lowery, “Pilot-based cross-phase modulation compensation for coherent optical orthogonal frequency division multiplexing long-haul optical communications systems,” Opt. Lett.36(9), 1647–1649 (2011).
    [CrossRef] [PubMed]
  11. W. Shieh and Y. Tang, “Ultrahigh-Speed Signal Transmission Over Nonlinear and Dispersive Fiber Optic Channel: The Multicarrier Advantage,” IEEE Photon J.2(3), 276–283 (2010).
    [CrossRef]
  12. Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett.22(16), 1250–1252 (2010).
    [CrossRef]
  13. A. Li, X. Chen, G. Gao, W. Shieh, and B. S. Krongold, “ Transmission of 1.63-Tb/s PDM-16QAM unique-word DFT-spread OFDM signal over 1,010-km SSMF,” in Proc. Optical Fiber Communication (OFC 2012), OW4C.1, Los Angeles, CA, (March 2012).
  14. S. Adhikari, M. Kuschnerov, S. L. Jansen, A. Lobato, O. Gaete, B. Inan, and W. Rosenkranz, “Spectral shaping on DFT-OFDM for higher transmission reach,” in Proc. Signal Processing in Photonic Communications (SPPCom 2012), SpTu2A, Colorado Springs, USA, (June 2012).
  15. S. Adhikari, S. L. Jansen, M. Kuschnerov, B. Inan, and W. Rosenkranz, “Analysis of spectrally shaped DFT-OFDM for fiber nonlinearity mitigation,” in Proc. European Conference on optical Communication (ECOC 2012), Tu.4.C.1, Amsterdam, Netherlands, (September 2012).
  16. S. Nakajima, “Effects of spectral shaping on OFDM transmission performance in nonlinear channels,” in Proc. Mobile and Wireless Communications Summit (ISTMWC 2007), 16th IST, e-isbn: 963–8111–66–6, Budapest, (July 2007).
  17. O. Gaete, L. Coelho, B. Spinnler and N. Hanik, “Pulse shaping using the discrete Fourier transform for direct detection optical systems,” in Proc. of Transparent Optical Networks (ICTON), We.A1.2, Stockholm, (June 2011).
  18. G. P. Agrawal, Lightwave Technology: Telecommunication Systems, 1st ed. (John Wiley and Sons, 2005).
  19. A. Lobato, M. Kuschnerov, A. Diaz, A. Napoli, B. Spinnler, and B. Lankl, “Performance comparison of single carrier and OFDM in coherent optical long-haul communication systems, ” in Proc. Asia Communications and Photonics Conference and Exhibition (ACP 2011), Shanghai, China, (2011).
  20. G. Shulkind and M. Nazarathy, “An analytical study of the improved nonlinear tolerance of DFT-spread OFDM and its unitary-spread OFDM generalization,” Opt. Express20(23), 25884–25901 (2012).
    [CrossRef]

2012 (1)

2011 (1)

2010 (2)

W. Shieh and Y. Tang, “Ultrahigh-Speed Signal Transmission Over Nonlinear and Dispersive Fiber Optic Channel: The Multicarrier Advantage,” IEEE Photon J.2(3), 276–283 (2010).
[CrossRef]

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett.22(16), 1250–1252 (2010).
[CrossRef]

2008 (1)

T. Jiang and Y. Wu, “An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals,” IEEE Trans. Broadcast54, 256–268 (2008).

2007 (1)

Du, L. B.

Jiang, T.

T. Jiang and Y. Wu, “An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals,” IEEE Trans. Broadcast54, 256–268 (2008).

Krongold, B. S.

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett.22(16), 1250–1252 (2010).
[CrossRef]

Lowery, A. J.

Nazarathy, M.

Shieh, W.

W. Shieh and Y. Tang, “Ultrahigh-Speed Signal Transmission Over Nonlinear and Dispersive Fiber Optic Channel: The Multicarrier Advantage,” IEEE Photon J.2(3), 276–283 (2010).
[CrossRef]

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett.22(16), 1250–1252 (2010).
[CrossRef]

Shulkind, G.

Tang, Y.

W. Shieh and Y. Tang, “Ultrahigh-Speed Signal Transmission Over Nonlinear and Dispersive Fiber Optic Channel: The Multicarrier Advantage,” IEEE Photon J.2(3), 276–283 (2010).
[CrossRef]

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett.22(16), 1250–1252 (2010).
[CrossRef]

Wu, Y.

T. Jiang and Y. Wu, “An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals,” IEEE Trans. Broadcast54, 256–268 (2008).

IEEE Photon J. (1)

W. Shieh and Y. Tang, “Ultrahigh-Speed Signal Transmission Over Nonlinear and Dispersive Fiber Optic Channel: The Multicarrier Advantage,” IEEE Photon J.2(3), 276–283 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett.22(16), 1250–1252 (2010).
[CrossRef]

IEEE Trans. Broadcast (1)

T. Jiang and Y. Wu, “An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals,” IEEE Trans. Broadcast54, 256–268 (2008).

Opt. Express (2)

Opt. Lett. (1)

Other (14)

S. L. Jansen, “Multi-carrier approaches for next-generation transmission: why, where and how?” in Proc Optical Fiber Communication (OFC 2012), tutorial, OTh1B1, Los Angeles, CA, (March 2012).

S. Zhang, M. F. Huang, F. Yaman, E. Mateo, D. Qian, Y. Zhang, L. Xu, Y. Shao, I. Djordjevic, T. Wang, Y. Inada, T. Inoue, T. Ogata, and Y. Aoki, “40x117Gb/s PDM-16QAM OFDM transmission over 10,180 km at 25GHz channel spacing with soft-decision LDPC coding and nonlinearity compensation,” in Proc. Optical Fiber Communication (OFC 2012), PDP5C.4, Los Angeles, CA, (March 2012).

K. Forozesh, S. L. Jansen, S. Randel, I. Morita, and H. Tanaka, “The influence of the dispersion map in coherent optical OFDM transmission systems,” in Proc. LEOS Summer Topical Meetings (2008), WC2.4, Acapulco, Mexico, (July 2008).

L. B. Du and A. J. Lowery, “ Fiber Nonlinearity Compensation for CO-OFDM Systems with Periodic Dispersion Maps, ” in Proc. Optical Fiber Telecommunications (OFC 2009), OTuO1, San Diego, CA, (March 2010).

S. Adhikari, S. L. Jansen, D. van den Borne, A. G. Striegler, and W. Rosenkranz, “PDM-OFDM for upgrade scenarios: An investigation of OFDM-induced XPM on 42.8-Gb/s DPSK over SSMF and LEAF,” in Proc. Optical Fiber Telecommunications (OFC 2009), OTuL5, San Diego, CA, (March 2010).

B. Goebel, S. Hellerbrand, and N. Hanik, “Link-aware precoding for nonlinear optical OFDM transmission,” in Proc. Optical Fiber Communication (OFC 2010), OTuE4, San Diego, CA, (March 2012).

A. Li, X. Chen, G. Gao, W. Shieh, and B. S. Krongold, “ Transmission of 1.63-Tb/s PDM-16QAM unique-word DFT-spread OFDM signal over 1,010-km SSMF,” in Proc. Optical Fiber Communication (OFC 2012), OW4C.1, Los Angeles, CA, (March 2012).

S. Adhikari, M. Kuschnerov, S. L. Jansen, A. Lobato, O. Gaete, B. Inan, and W. Rosenkranz, “Spectral shaping on DFT-OFDM for higher transmission reach,” in Proc. Signal Processing in Photonic Communications (SPPCom 2012), SpTu2A, Colorado Springs, USA, (June 2012).

S. Adhikari, S. L. Jansen, M. Kuschnerov, B. Inan, and W. Rosenkranz, “Analysis of spectrally shaped DFT-OFDM for fiber nonlinearity mitigation,” in Proc. European Conference on optical Communication (ECOC 2012), Tu.4.C.1, Amsterdam, Netherlands, (September 2012).

S. Nakajima, “Effects of spectral shaping on OFDM transmission performance in nonlinear channels,” in Proc. Mobile and Wireless Communications Summit (ISTMWC 2007), 16th IST, e-isbn: 963–8111–66–6, Budapest, (July 2007).

O. Gaete, L. Coelho, B. Spinnler and N. Hanik, “Pulse shaping using the discrete Fourier transform for direct detection optical systems,” in Proc. of Transparent Optical Networks (ICTON), We.A1.2, Stockholm, (June 2011).

G. P. Agrawal, Lightwave Technology: Telecommunication Systems, 1st ed. (John Wiley and Sons, 2005).

A. Lobato, M. Kuschnerov, A. Diaz, A. Napoli, B. Spinnler, and B. Lankl, “Performance comparison of single carrier and OFDM in coherent optical long-haul communication systems, ” in Proc. Asia Communications and Photonics Conference and Exhibition (ACP 2011), Shanghai, China, (2011).

A. Diaz, A. Napoli, S. Adhikari, Z. Maalej, A. P. Lobato Polo, M. Kuschnerov, and J. Prat, “Analysis of back-propagation and RF pilot tone based nonlinearity compensation for a 9x224Gb/s POLMUX- 16QAM system,” in Proc. Optical Fiber Communication (OFC 2012), OTh3C.5, Los Angeles, CA, (March 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of spectrally shaped DFTS-OFDM transmitter with conceptual diagram for Inset (a) DFTS-OFDM and Inset (b) S-OFDM.

Fig. 2
Fig. 2

Spectrum at the transmitter for (a) CO-OFDM, (b) DFTS-OFDM and (c) S-OFDM.

Fig. 3
Fig. 3

Evaluation of maximum reach from the required Eb/N0 and available Eb/N0 for CO-OFDM system over NDM SSMF links.

Fig. 4
Fig. 4

Maximum reach for varying launch powers for CO-OFDM (), DFTS-OFDM () and S-OFDM () for (a) non-dispersion managed and (b) dispersion managed SSMF links.

Fig. 5
Fig. 5

Percent increase in maximum reach for varying number of bands for DFTS-OFDM () and S-OFDM () for (a) SSMF and (b) LEAF.

Fig. 6
Fig. 6

Change in PAPR for varying excess bandwidth parameter β for S-OFDM () with reference PAPR value for CO-OFDM() and DFTS-OFDM().

Fig. 7
Fig. 7

Maximum reach for varying excess bandwidth parameter β for S-OFDM for (a) SSMF and (b) LEAF.

Tables (1)

Tables Icon

Table 1 Fiber Specifications

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E b N 0 =OSN R dB 10 log 10 ( 2×M× R s 2×12.5× 10 9 )
OSN R dB =58+ P in L S NF10 log 10 ( N S )

Metrics