Abstract

Modulation cancellation and signal inversion are demonstrated within reflective semiconductor optical amplifiers. The effect is necessary to implement colorless optical network units for network end-users, where downstream signals need to be erased in order to reuse the carrier for upstream transmission. The results presented here indicate that reflective semiconductor optical amplifiers possess the perfect high-speed all-optical gain saturation characteristics to completely cancel the downstream modulation at microwatt optical power levels and are thus the prime candidate to be constituents of future optical network units. Theoretical considerations are supported by experiments that show the cancellation of signals with a 6 dB extinction ratio at 2.5 Gbit/s.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated re?ective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
    [CrossRef]
  2. E. Wong, K. L. Lee, and T. Anderson, “Low cost WDM passive optical network with directly modulated self-seeding reflective SOA,” Electron. Lett. 42(5), 299–301 (2006).
    [CrossRef]
  3. L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
    [CrossRef] [PubMed]
  4. M. Martinelli, L. Marazzi, P. Parolari, M. Brunero, and G. Gavioli, “Polarization in retracing circuits for WDM-PON,” IEEE Photon. Technol. Lett. 24(14), 1191–1193 (2012).
    [CrossRef]
  5. K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
    [CrossRef]
  6. E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, “Signal-induced Rayleigh noise reduction using gain saturation in an integrated R-EAM-SOA,” Proc. Of Opt. Fiber Comm Conf., Paper O ThA 6, San Diego, (2009).
  7. L. W. Casperson and J. M. Casperson, “Power self-regulation in double-pass high-gain laser amplifiers,” J. Appl. Phys. 87(5), 2079–2083 (2000).
    [CrossRef]
  8. Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
    [CrossRef]
  9. J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” IEEE J. of Lightw. Tech. 25(3), 891–900 (2007).
    [CrossRef]
  10. A. Naughton, C. Antony, P. Ossieur, S. Porto, G. Talli, and P. D. Townsend, “Optimisation of SOA-REAMs for hybrid DWDM-TDMA PON applications,” Opt. Express 19(26), B722–B727 (2011).
    [CrossRef] [PubMed]

2012 (2)

L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
[CrossRef] [PubMed]

M. Martinelli, L. Marazzi, P. Parolari, M. Brunero, and G. Gavioli, “Polarization in retracing circuits for WDM-PON,” IEEE Photon. Technol. Lett. 24(14), 1191–1193 (2012).
[CrossRef]

2011 (2)

Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
[CrossRef]

A. Naughton, C. Antony, P. Ossieur, S. Porto, G. Talli, and P. D. Townsend, “Optimisation of SOA-REAMs for hybrid DWDM-TDMA PON applications,” Opt. Express 19(26), B722–B727 (2011).
[CrossRef] [PubMed]

2007 (1)

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” IEEE J. of Lightw. Tech. 25(3), 891–900 (2007).
[CrossRef]

2006 (1)

E. Wong, K. L. Lee, and T. Anderson, “Low cost WDM passive optical network with directly modulated self-seeding reflective SOA,” Electron. Lett. 42(5), 299–301 (2006).
[CrossRef]

2005 (1)

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated re?ective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

2001 (1)

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

2000 (1)

L. W. Casperson and J. M. Casperson, “Power self-regulation in double-pass high-gain laser amplifiers,” J. Appl. Phys. 87(5), 2079–2083 (2000).
[CrossRef]

Anderson, T.

E. Wong, K. L. Lee, and T. Anderson, “Low cost WDM passive optical network with directly modulated self-seeding reflective SOA,” Electron. Lett. 42(5), 299–301 (2006).
[CrossRef]

Antony, C.

Brenot, R.

L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
[CrossRef] [PubMed]

Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
[CrossRef]

Brunero, M.

M. Martinelli, L. Marazzi, P. Parolari, M. Brunero, and G. Gavioli, “Polarization in retracing circuits for WDM-PON,” IEEE Photon. Technol. Lett. 24(14), 1191–1193 (2012).
[CrossRef]

Casperson, J. M.

L. W. Casperson and J. M. Casperson, “Power self-regulation in double-pass high-gain laser amplifiers,” J. Appl. Phys. 87(5), 2079–2083 (2000).
[CrossRef]

Casperson, L. W.

L. W. Casperson and J. M. Casperson, “Power self-regulation in double-pass high-gain laser amplifiers,” J. Appl. Phys. 87(5), 2079–2083 (2000).
[CrossRef]

Cho, S. H.

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated re?ective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

de Valicourt, G.

L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
[CrossRef] [PubMed]

Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
[CrossRef]

Freude, W.

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” IEEE J. of Lightw. Tech. 25(3), 891–900 (2007).
[CrossRef]

Gavioli, G.

M. Martinelli, L. Marazzi, P. Parolari, M. Brunero, and G. Gavioli, “Polarization in retracing circuits for WDM-PON,” IEEE Photon. Technol. Lett. 24(14), 1191–1193 (2012).
[CrossRef]

Jeong, G.

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated re?ective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Kim, B. W.

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated re?ective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Kim, C. Y.

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated re?ective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Lee, J. H.

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated re?ective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Lee, K. L.

E. Wong, K. L. Lee, and T. Anderson, “Low cost WDM passive optical network with directly modulated self-seeding reflective SOA,” Electron. Lett. 42(5), 299–301 (2006).
[CrossRef]

Lee, W. R.

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated re?ective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Leuthold, J.

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” IEEE J. of Lightw. Tech. 25(3), 891–900 (2007).
[CrossRef]

Liu, Z.

Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
[CrossRef]

Maitra, A.

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” IEEE J. of Lightw. Tech. 25(3), 891–900 (2007).
[CrossRef]

Marazzi, L.

L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
[CrossRef] [PubMed]

M. Martinelli, L. Marazzi, P. Parolari, M. Brunero, and G. Gavioli, “Polarization in retracing circuits for WDM-PON,” IEEE Photon. Technol. Lett. 24(14), 1191–1193 (2012).
[CrossRef]

Martinelli, M.

L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
[CrossRef] [PubMed]

M. Martinelli, L. Marazzi, P. Parolari, M. Brunero, and G. Gavioli, “Polarization in retracing circuits for WDM-PON,” IEEE Photon. Technol. Lett. 24(14), 1191–1193 (2012).
[CrossRef]

Naughton, A.

Ossieur, P.

Park, M. Y.

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated re?ective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Parolari, P.

M. Martinelli, L. Marazzi, P. Parolari, M. Brunero, and G. Gavioli, “Polarization in retracing circuits for WDM-PON,” IEEE Photon. Technol. Lett. 24(14), 1191–1193 (2012).
[CrossRef]

L. Marazzi, P. Parolari, R. Brenot, G. de Valicourt, and M. Martinelli, “Network-embedded self-tuning cavity for WDM-PON transmitter,” Opt. Express 20(4), 3781–3786 (2012).
[CrossRef] [PubMed]

Porto, S.

Poulton, C. G.

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” IEEE J. of Lightw. Tech. 25(3), 891–900 (2007).
[CrossRef]

Sadeghi, M.

Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
[CrossRef]

Sato, K.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

Talli, G.

Toba, H.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

Townsend, P. D.

Violas, M.

Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
[CrossRef]

Wang, J.

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” IEEE J. of Lightw. Tech. 25(3), 891–900 (2007).
[CrossRef]

Wong, E.

E. Wong, K. L. Lee, and T. Anderson, “Low cost WDM passive optical network with directly modulated self-seeding reflective SOA,” Electron. Lett. 42(5), 299–301 (2006).
[CrossRef]

Electron. Lett. (1)

E. Wong, K. L. Lee, and T. Anderson, “Low cost WDM passive optical network with directly modulated self-seeding reflective SOA,” Electron. Lett. 42(5), 299–301 (2006).
[CrossRef]

IEEE J. of Lightw. Tech. (1)

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” IEEE J. of Lightw. Tech. 25(3), 891–900 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
[CrossRef]

W. R. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated re?ective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

M. Martinelli, L. Marazzi, P. Parolari, M. Brunero, and G. Gavioli, “Polarization in retracing circuits for WDM-PON,” IEEE Photon. Technol. Lett. 24(14), 1191–1193 (2012).
[CrossRef]

J. Appl. Phys. (1)

L. W. Casperson and J. M. Casperson, “Power self-regulation in double-pass high-gain laser amplifiers,” J. Appl. Phys. 87(5), 2079–2083 (2000).
[CrossRef]

Opt. Express (2)

Other (1)

E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, “Signal-induced Rayleigh noise reduction using gain saturation in an integrated R-EAM-SOA,” Proc. Of Opt. Fiber Comm Conf., Paper O ThA 6, San Diego, (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig.
       1
Fig. 1

Illustrations of typical WDM-PON architectures, showing the positioning of RSOAs within the ONUs, for: (a) externally seeded and (b) self-seeded configurations. An illustration of modulation cancellation using the RSOA is depicted in (c). Acronyms: OLT optical line terminal, US upstream, DS downstream, Rx receiver, Tx transmitter, ONU optical network unit, anti-reflection (AR), high-reflection (HR).

Fig.
       2
Fig. 2

(a) Experimental setup. Acronyms: PC polarization controller, PM power meter, OSA optical spectrum analyser. (b) Simulation framework to calculate the spatially resolved carrier density profile and counter-propagating waves. (c) Static fiber coupled- RSOA gain versus input power. (d) Static input power - output power transfer characteristic. Within (c) and (d): Open circles denote experimental results, solid lines denote simulation result. MCDR: Modulation cancellation dynamic range

Fig.
       3
Fig. 3

(a) The steady-state, spatially-resolved power of the travelling waves within the RSOA for a constant input power of – 6 dBm. The red and blue represent the power of the waves travelling to the left and right directions respectively. Note that the fiber-RSOA coupling loss of 6 dB is applied and the red curve begins at −12 dBm. Note that at the HR facet, the blue curve is 10 dB lower than the red curve at this position due to the 10% reflectivity of this facet. (b) Steady state, spatially resolved carrier density profiles along the RSOA for input powers of −15 dBm, −6 dBm and 2 dBm.

Fig.
       4
Fig. 4

Modulation cancellation at 2.5 Gbit/s. Experimental and simulated output eyediagrams at 3 different input powers: (a) −15 dBm, (b) - 6 dBm and (c) 0 dBm. The insert within each simulated eyediagram indicates the operating point on the RSOA input-output power transfer characteristic Fig. 2(d). The eyediagram of the input signal with 6 dB ER is shown in the upper left corner. Acronyms: Tx Transmitter, Att Attenuator, Circ circulator, Rx receiver.

Fig.
       5
Fig. 5

Measured ER of the output signal as a function of the average input power at 1.25 and 2.5 Gbit/s. The ER a the input is held constant at 6 dB. Ideal cancelation is found for input signal powers of around –6 dBm.

Tables (1)

Tables Icon

Table 1 RSOA Parameters Used in the Simulations

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N( z,t ) t = I RSOA ( z,t ) eV R spon ( z,t ) R stim ( z,t )
R stim ( z,t )= Γa( N( z,t ) N 0 ) 1+ ε nl P tot ( t ) [ | E + ( z,t ) | 2 + | E ( z,t ) | 2 + ε + ( z,t )+ ε ( z,t ) ] wdhυ
R spon ( z,t )=AN( z,t )+B N 2 ( z,t )+C N 3 ( z,t )
E ± ( z,t ) z 1 v g E ± ( z,t ) t = 1 2 E ± ( z,t )[ γ int +( 1j α LE ) Γa( N( z,t ) N 0 ) 1+ ε nl P ( t ) tot ]

Metrics