Abstract

We have demonstrated broad supercontinuum (SC) generation by using a highly nonlinear tapered tellurite microstructured fiber pumped by a 15-ps-pulsed laser with the peak power of 375 W. The fiber is characterized with a short section with a large diameter followed by a long section with a small diameter. The SC was mainly generated in the last 30-cm-long section which had a core diameter of 0.9 μm and a zero dispersion wavelength around the pump wavelength. Such a core size and a dispersion profile were chosen to ensure the SC was mainly broadened by phase matched four-wave mixing. The SC spans from UV to mid IR. The 10 dB spectrum is from 780 to 1890 nm. The input peak power is much lower than conventionally adopted in the picosecond regime. The constructed SC light source is cost-effective, since neither femtosecond pulsed laser nor high power picosecond pulsed laser is adopted.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley and J. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009).
    [CrossRef]
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
    [CrossRef]
  3. A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping,” Opt. Express13(2), 377–381 (2005).
    [CrossRef] [PubMed]
  4. X. Hu, Y. Wang, W. Zhao, Z. Yang, W. Zhang, C. Li, and H. Wang, “Nonlinear chirped-pulse propagation and supercontinuum generation in photonic crystal fibers,” Appl. Opt.49(26), 4984–4989 (2010).
    [CrossRef] [PubMed]
  5. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photoniccrystal fibers,” J. Opt. Soc. Am. B19(4), 753–764 (2002).
    [CrossRef]
  6. Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, and P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express19(15), 13757–13769 (2011).
    [CrossRef] [PubMed]
  7. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett.28(4), 216–218 (1976).
    [CrossRef]
  8. G. E. Busch, R. P. Jones, and P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett.18(2), 178–185 (1973).
    [CrossRef]
  9. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. O. Hamaguchi, “Ultrabroadband (>2000 cm-1) multiplex coherent anti-Stokes Raman scattering spectroscopy using a subnanosecond supercontinuum light source,” Opt. Lett.32(20), 3050–3052 (2007).
    [CrossRef] [PubMed]
  10. Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express19(16), 15162–15172 (2011).
    [CrossRef] [PubMed]
  11. M. Liao, X. Yan, Z. Duan, T. Suzuki, and Y. Ohishi, “Tellurite Photonic Nanostructured Fiber,” J. Lightwave Technol.29(7), 1018–1025 (2011).
    [CrossRef]
  12. G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett.35(2), 136–138 (2010).
    [CrossRef] [PubMed]
  13. M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
    [CrossRef] [PubMed]
  14. M. Liao, C. Chaudhari, X. Yan, G. Qin, C. Kito, T. Suzuki, and Y. Ohishi, “A suspended core nanofiber with unprecedented large diameter ratio of holey region to core,” Opt. Express18(9), 9088–9097 (2010).
    [CrossRef] [PubMed]
  15. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express13(20), 7779–7793 (2005).
    [CrossRef] [PubMed]
  16. V. V. Kumar, A. George, J. Knight, and P. Russell, “Tellurite photonic crystal fiber,” Opt. Express11(20), 2641–2645 (2003).
    [CrossRef] [PubMed]
  17. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  18. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
    [CrossRef] [PubMed]
  19. T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express13(23), 9556–9569 (2005).
    [CrossRef] [PubMed]
  20. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express14(12), 5715–5722 (2006).
    [CrossRef] [PubMed]
  21. K. K. Chen, S. U. Alam, J. H. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express18(6), 5426–5432 (2010).
    [CrossRef] [PubMed]
  22. A. Kudlinski, V. Pureur, G. Bouwmans, and A. Mussot, “Experimental investigation of combined four-wave mixing and Raman effect in the normal dispersion regime of a photonic crystal fiber,” Opt. Lett.33(21), 2488–2490 (2008).
    [PubMed]
  23. X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett.36(14), 2659–2661 (2011).
    [CrossRef] [PubMed]

2011 (6)

2010 (4)

2009 (1)

J. M. Dudley and J. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (2)

2005 (3)

2003 (1)

2002 (1)

1976 (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett.28(4), 216–218 (1976).
[CrossRef]

1973 (1)

G. E. Busch, R. P. Jones, and P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett.18(2), 178–185 (1973).
[CrossRef]

Alam, S. U.

Andersen, T.

Baets, R.

Bhadra, S. K.

Birks, T. A.

Bouwmans, G.

Busch, G. E.

G. E. Busch, R. P. Jones, and P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett.18(2), 178–185 (1973).
[CrossRef]

Chau, A. H. L.

Chaudhari, C.

Chen, K. K.

Codemard, C.

Coen, S.

Couderc, V.

Couny, F.

Dong, J.

Duan, Z.

Dudley, J. M.

J. M. Dudley and J. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Fan, Y.

Gao, W.

Gapontsev, V. P.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

George, A.

George, A. K.

Ghosh, D.

Green, W. M. J.

Hamaguchi, H. O.

Harvey, J. D.

Hayes, J. R.

He, B.

Hu, X.

Jones, R. P.

G. E. Busch, R. P. Jones, and P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett.18(2), 178–185 (1973).
[CrossRef]

Kano, H.

Kito, C.

Knight, J.

Knight, J. C.

Kudlinski, A.

Kumar, V. V.

Kuyken, B.

Lau, A. P. T.

Leonhardt, R.

Leproux, P.

Li, C.

Li, F.

Li, Q.

Li, X.

Liao, M.

Limpert, J.

Lin, C.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett.28(4), 216–218 (1976).
[CrossRef]

Lin, D.

Liu, H.

Liu, X.

Lou, Q.

Malinowski, A.

Mangan, B. J.

Mori, A.

Mussot, A.

Ohishi, Y.

Okuno, M.

Osgood, R. M.

Pal, M.

Popov, S. V.

Price, J. H.

Pureur, V.

Qin, G.

Rentzepis, P. M.

G. E. Busch, R. P. Jones, and P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett.18(2), 178–185 (1973).
[CrossRef]

Richardson, D. J.

Roberts, P. J.

Roelkens, G.

Rulkov, A. B.

Russell, P.

Russell, P. S. J.

Russell, P. St. J.

Sabert, H.

Schimpf, D.

Schreiber, T.

Shen, D.

Stolen, R. H.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett.28(4), 216–218 (1976).
[CrossRef]

Suzuki, T.

Taylor, J.

J. M. Dudley and J. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009).
[CrossRef]

Taylor, J. R.

Travers, J. C.

Tsia, K. K.

Tünnermann, A.

Vyatkin, M. Y.

Wadsworth, W. J.

Wai, P. K. A.

Wang, H.

Wang, Y.

Wei, Y.

Wong, K. K. Y.

Yan, X.

Yang, Z.

Zhang, W.

Zhao, W.

Zheng, J.

Zhou, J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett.28(4), 216–218 (1976).
[CrossRef]

Chem. Phys. Lett. (1)

G. E. Busch, R. P. Jones, and P. M. Rentzepis, “Picosecond spectroscopy using a picosecond continuum,” Chem. Phys. Lett.18(2), 178–185 (1973).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

J. M. Dudley and J. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009).
[CrossRef]

Opt. Express (11)

Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, and P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express19(15), 13757–13769 (2011).
[CrossRef] [PubMed]

A. B. Rulkov, M. Y. Vyatkin, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping,” Opt. Express13(2), 377–381 (2005).
[CrossRef] [PubMed]

Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express19(16), 15162–15172 (2011).
[CrossRef] [PubMed]

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, X. Yan, G. Qin, C. Kito, T. Suzuki, and Y. Ohishi, “A suspended core nanofiber with unprecedented large diameter ratio of holey region to core,” Opt. Express18(9), 9088–9097 (2010).
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express13(20), 7779–7793 (2005).
[CrossRef] [PubMed]

V. V. Kumar, A. George, J. Knight, and P. Russell, “Tellurite photonic crystal fiber,” Opt. Express11(20), 2641–2645 (2003).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express13(23), 9556–9569 (2005).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express14(12), 5715–5722 (2006).
[CrossRef] [PubMed]

K. K. Chen, S. U. Alam, J. H. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express18(6), 5426–5432 (2010).
[CrossRef] [PubMed]

Opt. Lett. (4)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) The core diameter along the fiber length. Inset shows the cross section of the fiber with the core diameter of 0.9 μm. (b) Chromatic dispersion of the tellurite microstructured fiber with different core diameters, and dependence of the nonlinear coefficient on the core diameter.

Fig. 2
Fig. 2

(a) Measured peak-power-dependent SC spectra in the tapered microstructured fiber. The curve is displaced by 15 dB. (b) The fiber glows blue with the input peak power of 375 W. (c) Simulated SC spectrum in a 30-cm-long fiber with the core dimeter of 0.9 μm.

Fig. 3
Fig. 3

(a) Phase matched conditions of FWM in the tellurite microstructured fiber with the core diameter of 0.9 μm. Legend shows the peak power of the pump pulse. (b) Soliton wavelength vs. wavelength of dispersive wave for the tellurite microstructured fiber with different core diameters.

Tables (1)

Tables Icon

Table 1 Various highly nonlinear fibers and their SC generations in picosecond regime. 10 dB bandwidths were obtained from the SC spectra in the publications. When determining the 10 dB bandwidth, the strong pump peak was excluded.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ= 2π λ ( n 2 (x,y) | F(x,y) | 4 dxdy ( | F(x,y) | 2 dxdy ) 2 )
2γ P 0 +Δβ=0
n2 β n ( ω s ) n! ( ω DW ω s ) n = γ P s 2

Metrics