Abstract

The optical network unit (ONU), installed at a customer’s premises, accounts for about 60% of power in current fiber-to-the-home (FTTH) networks. We propose a power consumption model for the ONU and evaluate the ONU power consumption in various next generation optical access (NGOA) architectures. Further, we study the impact of the power savings of the ONU in various low power modes such as power shedding, doze and sleep.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pickavet, W. Vereecken, S. Demeyer, P. Audenaert, B. Vermeulen, C. Develder, D. Colle, B. Dhoedt, and P. Demeester, “Worldwide energy needs for ICT: the rise of power-aware networking,” in Proc. of IEEE Conf. on Advanced Networks and Telecommunications Systems, New Delhi, 2008.
  2. K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the Internet,” IEEE Netw.25(2), 6–12 (2011).
    [CrossRef]
  3. White paper: 802.3av Power Saving Adhoc Report, Seoul, Sep. 2008. Available at: http://www.ieee802.org/3/av/public/2008_09/3av_0809_otaka_1.pdf
  4. L. Shi, B. Mukherjee, and S. S. Lee, “Efficient PON with sleep-mode ONU: progress, challenges, and solutions,” IEEE Netw.26(2), 36–41 (2012).
    [CrossRef]
  5. A. Dixit, B. Lannoo, S. Lambert, D. Colle, M. Pickavet, and P. Demeester, “Evaluation of ONU power saving modes in next generation optical access networks,” in Proc. of European Conf. on Optical Communication, Amsterdam, paper Mo.2.B.5 (2012).
  6. B. Skubic, E. In de Betou, T. Ayhan, and S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag.50(1), 122–127 (2012).
    [CrossRef]
  7. I. T. U.-T. Rec, G.Sup45, GPON Power Conservation, 2009.
  8. GreenTouch, http://www.greentouch.org .
  9. Code of Conduct on Energy Consumption of Broadband Equipment, European Commission, v. 4, Feb. 10, 2011.
  10. 249025-ICT OASE Project, D4.4: Implementation and integration into new system concepts.
  11. SFP Multisource level agreement, Available at: ftp://ftp.seagate.com/sff/INF-8074.PDF
  12. E. Igawa, M. Nogami, and J. Nakagawa, “Symmetric 10G-EPON ONU burst-mode transceiver employing dynamic power save control circuit,” in Proc. of Optical Fiber Communication Conf. and National Fiber Optic Engineers Conf., Los Angeles, CA, paper NTuD5.pdf (2011).
  13. E. Wong, C. A. Chan, P. I. Dias, M. Mueller, and M. C. Amann, “Vertical cavity surface emitting laser transmitters for energy efficient broadband access networks,” in Proc. of Int. Conf. on Communications, Ottawa, paper ONS02 (2012).
  14. S. W. Wong, L. Valcarenghi, Y. She-Hwa, D. R. Campelo, S. Yamashita, and L. Kazovsky, “Sleep mode for energy saving PONs: advantages and drawbacks,” in Proc. of IEEE Globecom, Honolulu, HI (2009).
  15. L. Bolzani, A. Calimera, A. Macii, E. Macii, and M. Poncino, “Enabling concurrent clock and power gating inan industrial design flow,” in Proc. Design, Automation & Test in Europe Conference & Exhibition, 2009.
  16. K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi, and J. A. Maestro, “IEEE 802.3az:The Road to Energy Efficient Ethernet,” IEEE Commun. Mag.48(11), 50–56 (2010).
    [CrossRef]
  17. G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag.40(2), 74–80 (2002).
    [CrossRef]

2012 (2)

L. Shi, B. Mukherjee, and S. S. Lee, “Efficient PON with sleep-mode ONU: progress, challenges, and solutions,” IEEE Netw.26(2), 36–41 (2012).
[CrossRef]

B. Skubic, E. In de Betou, T. Ayhan, and S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag.50(1), 122–127 (2012).
[CrossRef]

2011 (1)

K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the Internet,” IEEE Netw.25(2), 6–12 (2011).
[CrossRef]

2010 (1)

K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi, and J. A. Maestro, “IEEE 802.3az:The Road to Energy Efficient Ethernet,” IEEE Commun. Mag.48(11), 50–56 (2010).
[CrossRef]

2002 (1)

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag.40(2), 74–80 (2002).
[CrossRef]

Ayhan, T.

B. Skubic, E. In de Betou, T. Ayhan, and S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag.50(1), 122–127 (2012).
[CrossRef]

Ayre, R.

K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the Internet,” IEEE Netw.25(2), 6–12 (2011).
[CrossRef]

Baliga, J.

K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the Internet,” IEEE Netw.25(2), 6–12 (2011).
[CrossRef]

Bennett, M.

K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi, and J. A. Maestro, “IEEE 802.3az:The Road to Energy Efficient Ethernet,” IEEE Commun. Mag.48(11), 50–56 (2010).
[CrossRef]

Christensen, K.

K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi, and J. A. Maestro, “IEEE 802.3az:The Road to Energy Efficient Ethernet,” IEEE Commun. Mag.48(11), 50–56 (2010).
[CrossRef]

Dahlfort, S.

B. Skubic, E. In de Betou, T. Ayhan, and S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag.50(1), 122–127 (2012).
[CrossRef]

Feng, M.

K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the Internet,” IEEE Netw.25(2), 6–12 (2011).
[CrossRef]

Hinton, K.

K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the Internet,” IEEE Netw.25(2), 6–12 (2011).
[CrossRef]

In de Betou, E.

B. Skubic, E. In de Betou, T. Ayhan, and S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag.50(1), 122–127 (2012).
[CrossRef]

Kramer, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag.40(2), 74–80 (2002).
[CrossRef]

Lee, S. S.

L. Shi, B. Mukherjee, and S. S. Lee, “Efficient PON with sleep-mode ONU: progress, challenges, and solutions,” IEEE Netw.26(2), 36–41 (2012).
[CrossRef]

Maestro, J. A.

K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi, and J. A. Maestro, “IEEE 802.3az:The Road to Energy Efficient Ethernet,” IEEE Commun. Mag.48(11), 50–56 (2010).
[CrossRef]

Mostowfi, M.

K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi, and J. A. Maestro, “IEEE 802.3az:The Road to Energy Efficient Ethernet,” IEEE Commun. Mag.48(11), 50–56 (2010).
[CrossRef]

Mukherjee, B.

L. Shi, B. Mukherjee, and S. S. Lee, “Efficient PON with sleep-mode ONU: progress, challenges, and solutions,” IEEE Netw.26(2), 36–41 (2012).
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag.40(2), 74–80 (2002).
[CrossRef]

Nordman, B.

K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi, and J. A. Maestro, “IEEE 802.3az:The Road to Energy Efficient Ethernet,” IEEE Commun. Mag.48(11), 50–56 (2010).
[CrossRef]

Pesavento, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag.40(2), 74–80 (2002).
[CrossRef]

Reviriego, P.

K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi, and J. A. Maestro, “IEEE 802.3az:The Road to Energy Efficient Ethernet,” IEEE Commun. Mag.48(11), 50–56 (2010).
[CrossRef]

Shi, L.

L. Shi, B. Mukherjee, and S. S. Lee, “Efficient PON with sleep-mode ONU: progress, challenges, and solutions,” IEEE Netw.26(2), 36–41 (2012).
[CrossRef]

Skubic, B.

B. Skubic, E. In de Betou, T. Ayhan, and S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag.50(1), 122–127 (2012).
[CrossRef]

Tucker, R. S.

K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the Internet,” IEEE Netw.25(2), 6–12 (2011).
[CrossRef]

IEEE Commun. Mag. (3)

B. Skubic, E. In de Betou, T. Ayhan, and S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag.50(1), 122–127 (2012).
[CrossRef]

K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi, and J. A. Maestro, “IEEE 802.3az:The Road to Energy Efficient Ethernet,” IEEE Commun. Mag.48(11), 50–56 (2010).
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag.40(2), 74–80 (2002).
[CrossRef]

IEEE Netw. (2)

K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, “Power consumption and energy efficiency in the Internet,” IEEE Netw.25(2), 6–12 (2011).
[CrossRef]

L. Shi, B. Mukherjee, and S. S. Lee, “Efficient PON with sleep-mode ONU: progress, challenges, and solutions,” IEEE Netw.26(2), 36–41 (2012).
[CrossRef]

Other (12)

A. Dixit, B. Lannoo, S. Lambert, D. Colle, M. Pickavet, and P. Demeester, “Evaluation of ONU power saving modes in next generation optical access networks,” in Proc. of European Conf. on Optical Communication, Amsterdam, paper Mo.2.B.5 (2012).

White paper: 802.3av Power Saving Adhoc Report, Seoul, Sep. 2008. Available at: http://www.ieee802.org/3/av/public/2008_09/3av_0809_otaka_1.pdf

M. Pickavet, W. Vereecken, S. Demeyer, P. Audenaert, B. Vermeulen, C. Develder, D. Colle, B. Dhoedt, and P. Demeester, “Worldwide energy needs for ICT: the rise of power-aware networking,” in Proc. of IEEE Conf. on Advanced Networks and Telecommunications Systems, New Delhi, 2008.

I. T. U.-T. Rec, G.Sup45, GPON Power Conservation, 2009.

GreenTouch, http://www.greentouch.org .

Code of Conduct on Energy Consumption of Broadband Equipment, European Commission, v. 4, Feb. 10, 2011.

249025-ICT OASE Project, D4.4: Implementation and integration into new system concepts.

SFP Multisource level agreement, Available at: ftp://ftp.seagate.com/sff/INF-8074.PDF

E. Igawa, M. Nogami, and J. Nakagawa, “Symmetric 10G-EPON ONU burst-mode transceiver employing dynamic power save control circuit,” in Proc. of Optical Fiber Communication Conf. and National Fiber Optic Engineers Conf., Los Angeles, CA, paper NTuD5.pdf (2011).

E. Wong, C. A. Chan, P. I. Dias, M. Mueller, and M. C. Amann, “Vertical cavity surface emitting laser transmitters for energy efficient broadband access networks,” in Proc. of Int. Conf. on Communications, Ottawa, paper ONS02 (2012).

S. W. Wong, L. Valcarenghi, Y. She-Hwa, D. R. Campelo, S. Yamashita, and L. Kazovsky, “Sleep mode for energy saving PONs: advantages and drawbacks,” in Proc. of IEEE Globecom, Honolulu, HI (2009).

L. Bolzani, A. Calimera, A. Macii, E. Macii, and M. Poncino, “Enabling concurrent clock and power gating inan industrial design flow,” in Proc. Design, Automation & Test in Europe Conference & Exhibition, 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

ONU power consumption model.

Fig. 2
Fig. 2

(a) A TDMA-PON with an OLT and two ONUs showing REPORT (R1 and R2 for ONU1 and 2) and GATE (G1 and G2 for ONU1 and 2) messages transmission. (b) GATE prediction in the SMA algorithm.

Fig. 3
Fig. 3

Power Consumption of NGOA architectures in low power modes

Fig. 4
Fig. 4

Power Consumption (W) of various NGOA systems in doze mode during busy hours with three values of the cycle length: short (5 ms), moderate (20 ms) and long (100 ms). The bars representing variable, overheads, and data rate components will be zero for the best case scenario.

Fig. 5
Fig. 5

Power Consumption (W) of various NGOA systems in sleep mode during busy hours with three values of the cycle length: short (5 ms), moderate (20 ms) and long (100 ms). The bars representing variable, overheads, and data rate components will be zero for the best case scenario.

Fig. 6
Fig. 6

(a) Queuing delay vs. cycle length (b) Queue size vs. cycle length. H (high = 100 Mbps) and L (Low = 1.5 Mbps) data rates are evaluated.

Tables (2)

Tables Icon

Table 1 NGOA system concepts and key required functionality

Tables Icon

Table 2 Switching time and power saving tradeoffs in considered mechanisms

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

TS=Min{ T cycle N u ,Max( B u R u , B d R d )}
M T p [i+1]=G T k [i+1]+rtt[k]rtt[p]+Δ
T D = T cycle .(1 R d R u T o T cycle )
P DM = P PS .( R d R u + T o T cycle )+ P DS .(1 R d R u T o T cycle )

Metrics