Abstract

We report enhanced 10 Gb/s operation of directly modulated bandwidth-limited reflective semiconductor optical amplifiers. By using a single suitable arrayed waveguide grating we achieve simultaneously WDM demultiplexing and optical equalization. Compared to previous approaches, the proposed system results significantly more tolerant to seeding wavelength drifts. This removes the need for wavelength lockers, additional electronic equalization or complex digital signal processing. Uniform C-band operations are obtained experimentally with < 2 dB power penalty within a wavelength drift of 10 GHz (which doubles the ITU-T standard recommendations).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Cho, Y. Takushima, and Y. Chung, “Enhanced operating range of wdm pon implemented by using uncooled rsoas,” IEEE Photon. Technol. Lett.20, 1536–1538 (2008).
    [CrossRef]
  2. K. Cho, Y. Takushima, and Y. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20, 1533–1535 (2008).
    [CrossRef]
  3. A. Agata and Y. Horiuchi, “RSOA-Based 10Gb/s WDM PON using FEC and MLSE equalizers,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2010).
  4. B. Schrenk, G. de Valicourt, M. Omella, J. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett.22, 392–394 (2010).
    [CrossRef]
  5. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” in “Optical Communication, 2008. ECOC 2008. 34th European Conference on,” (IEEE, 2008), pp. 1–2.
    [CrossRef]
  6. M. Omella, V. Polo, J. Lazaro, B. Schrenk, and J. Prat, “10 Gb/s RSOA transmission by direct duobinary modulation,” in “Optical Communication, 2008. ECOC 2008. 34th European Conference on,” (IEEE, 2008), pp. 1–2.
    [CrossRef]
  7. I. Papagiannakis, M. Omella, D. Klonidis, A. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett.20, 2168–2170 (2008).
    [CrossRef]
  8. H. Kim, “10-Gb/s Operation of RSOA esing a delay interferometer,” IEEE Photon. Technol. Lett.22, 1379–1381 (2010).
    [CrossRef]
  9. H. Kim, “Transmission of 10-Gbps directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photon. Technol. Lett.1–1 (2011).
  10. M. Presi, A. Chiuchiarelli, R. Corsini, P. Choudhury, and E. Ciaramella, “Enhanced 10-gb/s operation of bandwidth-limited r-soas without electronic equalization,” in “European Conference and Exhibition on Optical Communication,” (Optical Society of America, 2012).
  11. S. Jung, Y. Takushima, and Y. Chung, “Generation of 5-gbps qpsk signal using directly modulated rsoa for 100-km coherent wdm pon,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011).
  12. Q. Guo, A. Tran, and C. Chae, “20 Gb/s WDM-PON system with 1 GHz RSOA using partial response equalization and optical filter detuning,” in “National Fiber Optic Engineers Conference,” (Optical Society of America, 2011).
  13. M. Matsuura, N. Iwatsu, K. Kitamura, and N. Kishi, “Time-resolved chirp properties of soas measured with an optical bandpass filter,” IEEE Photon. Technol. Lett.20, 2001–2003 (2008).
    [CrossRef]

2011

H. Kim, “Transmission of 10-Gbps directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photon. Technol. Lett.1–1 (2011).

2010

H. Kim, “10-Gb/s Operation of RSOA esing a delay interferometer,” IEEE Photon. Technol. Lett.22, 1379–1381 (2010).
[CrossRef]

B. Schrenk, G. de Valicourt, M. Omella, J. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett.22, 392–394 (2010).
[CrossRef]

2008

I. Papagiannakis, M. Omella, D. Klonidis, A. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett.20, 2168–2170 (2008).
[CrossRef]

K. Cho, Y. Takushima, and Y. Chung, “Enhanced operating range of wdm pon implemented by using uncooled rsoas,” IEEE Photon. Technol. Lett.20, 1536–1538 (2008).
[CrossRef]

K. Cho, Y. Takushima, and Y. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20, 1533–1535 (2008).
[CrossRef]

M. Matsuura, N. Iwatsu, K. Kitamura, and N. Kishi, “Time-resolved chirp properties of soas measured with an optical bandpass filter,” IEEE Photon. Technol. Lett.20, 2001–2003 (2008).
[CrossRef]

Agata, A.

A. Agata and Y. Horiuchi, “RSOA-Based 10Gb/s WDM PON using FEC and MLSE equalizers,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2010).

Birbas, A.

I. Papagiannakis, M. Omella, D. Klonidis, A. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett.20, 2168–2170 (2008).
[CrossRef]

Brenot, R.

B. Schrenk, G. de Valicourt, M. Omella, J. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett.22, 392–394 (2010).
[CrossRef]

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” in “Optical Communication, 2008. ECOC 2008. 34th European Conference on,” (IEEE, 2008), pp. 1–2.
[CrossRef]

Chae, C.

Q. Guo, A. Tran, and C. Chae, “20 Gb/s WDM-PON system with 1 GHz RSOA using partial response equalization and optical filter detuning,” in “National Fiber Optic Engineers Conference,” (Optical Society of America, 2011).

Chanclou, P.

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” in “Optical Communication, 2008. ECOC 2008. 34th European Conference on,” (IEEE, 2008), pp. 1–2.
[CrossRef]

Charbonnier, B.

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” in “Optical Communication, 2008. ECOC 2008. 34th European Conference on,” (IEEE, 2008), pp. 1–2.
[CrossRef]

Chiuchiarelli, A.

M. Presi, A. Chiuchiarelli, R. Corsini, P. Choudhury, and E. Ciaramella, “Enhanced 10-gb/s operation of bandwidth-limited r-soas without electronic equalization,” in “European Conference and Exhibition on Optical Communication,” (Optical Society of America, 2012).

Cho, K.

K. Cho, Y. Takushima, and Y. Chung, “Enhanced operating range of wdm pon implemented by using uncooled rsoas,” IEEE Photon. Technol. Lett.20, 1536–1538 (2008).
[CrossRef]

K. Cho, Y. Takushima, and Y. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20, 1533–1535 (2008).
[CrossRef]

Choudhury, P.

M. Presi, A. Chiuchiarelli, R. Corsini, P. Choudhury, and E. Ciaramella, “Enhanced 10-gb/s operation of bandwidth-limited r-soas without electronic equalization,” in “European Conference and Exhibition on Optical Communication,” (Optical Society of America, 2012).

Chung, Y.

K. Cho, Y. Takushima, and Y. Chung, “Enhanced operating range of wdm pon implemented by using uncooled rsoas,” IEEE Photon. Technol. Lett.20, 1536–1538 (2008).
[CrossRef]

K. Cho, Y. Takushima, and Y. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20, 1533–1535 (2008).
[CrossRef]

S. Jung, Y. Takushima, and Y. Chung, “Generation of 5-gbps qpsk signal using directly modulated rsoa for 100-km coherent wdm pon,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011).

Ciaramella, E.

M. Presi, A. Chiuchiarelli, R. Corsini, P. Choudhury, and E. Ciaramella, “Enhanced 10-gb/s operation of bandwidth-limited r-soas without electronic equalization,” in “European Conference and Exhibition on Optical Communication,” (Optical Society of America, 2012).

Corsini, R.

M. Presi, A. Chiuchiarelli, R. Corsini, P. Choudhury, and E. Ciaramella, “Enhanced 10-gb/s operation of bandwidth-limited r-soas without electronic equalization,” in “European Conference and Exhibition on Optical Communication,” (Optical Society of America, 2012).

de Valicourt, G.

B. Schrenk, G. de Valicourt, M. Omella, J. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett.22, 392–394 (2010).
[CrossRef]

Duong, T.

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” in “Optical Communication, 2008. ECOC 2008. 34th European Conference on,” (IEEE, 2008), pp. 1–2.
[CrossRef]

Genay, N.

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” in “Optical Communication, 2008. ECOC 2008. 34th European Conference on,” (IEEE, 2008), pp. 1–2.
[CrossRef]

Guo, Q.

Q. Guo, A. Tran, and C. Chae, “20 Gb/s WDM-PON system with 1 GHz RSOA using partial response equalization and optical filter detuning,” in “National Fiber Optic Engineers Conference,” (Optical Society of America, 2011).

Horiuchi, Y.

A. Agata and Y. Horiuchi, “RSOA-Based 10Gb/s WDM PON using FEC and MLSE equalizers,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2010).

Iwatsu, N.

M. Matsuura, N. Iwatsu, K. Kitamura, and N. Kishi, “Time-resolved chirp properties of soas measured with an optical bandpass filter,” IEEE Photon. Technol. Lett.20, 2001–2003 (2008).
[CrossRef]

Jung, S.

S. Jung, Y. Takushima, and Y. Chung, “Generation of 5-gbps qpsk signal using directly modulated rsoa for 100-km coherent wdm pon,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011).

Kikidis, J.

I. Papagiannakis, M. Omella, D. Klonidis, A. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett.20, 2168–2170 (2008).
[CrossRef]

Kim, H.

H. Kim, “Transmission of 10-Gbps directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photon. Technol. Lett.1–1 (2011).

H. Kim, “10-Gb/s Operation of RSOA esing a delay interferometer,” IEEE Photon. Technol. Lett.22, 1379–1381 (2010).
[CrossRef]

Kishi, N.

M. Matsuura, N. Iwatsu, K. Kitamura, and N. Kishi, “Time-resolved chirp properties of soas measured with an optical bandpass filter,” IEEE Photon. Technol. Lett.20, 2001–2003 (2008).
[CrossRef]

Kitamura, K.

M. Matsuura, N. Iwatsu, K. Kitamura, and N. Kishi, “Time-resolved chirp properties of soas measured with an optical bandpass filter,” IEEE Photon. Technol. Lett.20, 2001–2003 (2008).
[CrossRef]

Klonidis, D.

I. Papagiannakis, M. Omella, D. Klonidis, A. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett.20, 2168–2170 (2008).
[CrossRef]

Lazaro, J.

B. Schrenk, G. de Valicourt, M. Omella, J. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett.22, 392–394 (2010).
[CrossRef]

M. Omella, V. Polo, J. Lazaro, B. Schrenk, and J. Prat, “10 Gb/s RSOA transmission by direct duobinary modulation,” in “Optical Communication, 2008. ECOC 2008. 34th European Conference on,” (IEEE, 2008), pp. 1–2.
[CrossRef]

Matsuura, M.

M. Matsuura, N. Iwatsu, K. Kitamura, and N. Kishi, “Time-resolved chirp properties of soas measured with an optical bandpass filter,” IEEE Photon. Technol. Lett.20, 2001–2003 (2008).
[CrossRef]

Omella, M.

B. Schrenk, G. de Valicourt, M. Omella, J. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett.22, 392–394 (2010).
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, A. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett.20, 2168–2170 (2008).
[CrossRef]

M. Omella, V. Polo, J. Lazaro, B. Schrenk, and J. Prat, “10 Gb/s RSOA transmission by direct duobinary modulation,” in “Optical Communication, 2008. ECOC 2008. 34th European Conference on,” (IEEE, 2008), pp. 1–2.
[CrossRef]

Papagiannakis, I.

I. Papagiannakis, M. Omella, D. Klonidis, A. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett.20, 2168–2170 (2008).
[CrossRef]

Pizzinat, A.

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” in “Optical Communication, 2008. ECOC 2008. 34th European Conference on,” (IEEE, 2008), pp. 1–2.
[CrossRef]

Polo, V.

M. Omella, V. Polo, J. Lazaro, B. Schrenk, and J. Prat, “10 Gb/s RSOA transmission by direct duobinary modulation,” in “Optical Communication, 2008. ECOC 2008. 34th European Conference on,” (IEEE, 2008), pp. 1–2.
[CrossRef]

Prat, J.

B. Schrenk, G. de Valicourt, M. Omella, J. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett.22, 392–394 (2010).
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, A. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett.20, 2168–2170 (2008).
[CrossRef]

M. Omella, V. Polo, J. Lazaro, B. Schrenk, and J. Prat, “10 Gb/s RSOA transmission by direct duobinary modulation,” in “Optical Communication, 2008. ECOC 2008. 34th European Conference on,” (IEEE, 2008), pp. 1–2.
[CrossRef]

Presi, M.

M. Presi, A. Chiuchiarelli, R. Corsini, P. Choudhury, and E. Ciaramella, “Enhanced 10-gb/s operation of bandwidth-limited r-soas without electronic equalization,” in “European Conference and Exhibition on Optical Communication,” (Optical Society of America, 2012).

Schrenk, B.

B. Schrenk, G. de Valicourt, M. Omella, J. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett.22, 392–394 (2010).
[CrossRef]

M. Omella, V. Polo, J. Lazaro, B. Schrenk, and J. Prat, “10 Gb/s RSOA transmission by direct duobinary modulation,” in “Optical Communication, 2008. ECOC 2008. 34th European Conference on,” (IEEE, 2008), pp. 1–2.
[CrossRef]

Takushima, Y.

K. Cho, Y. Takushima, and Y. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20, 1533–1535 (2008).
[CrossRef]

K. Cho, Y. Takushima, and Y. Chung, “Enhanced operating range of wdm pon implemented by using uncooled rsoas,” IEEE Photon. Technol. Lett.20, 1536–1538 (2008).
[CrossRef]

S. Jung, Y. Takushima, and Y. Chung, “Generation of 5-gbps qpsk signal using directly modulated rsoa for 100-km coherent wdm pon,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011).

Tomkos, I.

I. Papagiannakis, M. Omella, D. Klonidis, A. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett.20, 2168–2170 (2008).
[CrossRef]

Tran, A.

Q. Guo, A. Tran, and C. Chae, “20 Gb/s WDM-PON system with 1 GHz RSOA using partial response equalization and optical filter detuning,” in “National Fiber Optic Engineers Conference,” (Optical Society of America, 2011).

IEEE Photon. Technol. Lett.

K. Cho, Y. Takushima, and Y. Chung, “Enhanced operating range of wdm pon implemented by using uncooled rsoas,” IEEE Photon. Technol. Lett.20, 1536–1538 (2008).
[CrossRef]

K. Cho, Y. Takushima, and Y. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20, 1533–1535 (2008).
[CrossRef]

B. Schrenk, G. de Valicourt, M. Omella, J. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett.22, 392–394 (2010).
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, A. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett.20, 2168–2170 (2008).
[CrossRef]

H. Kim, “10-Gb/s Operation of RSOA esing a delay interferometer,” IEEE Photon. Technol. Lett.22, 1379–1381 (2010).
[CrossRef]

H. Kim, “Transmission of 10-Gbps directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photon. Technol. Lett.1–1 (2011).

M. Matsuura, N. Iwatsu, K. Kitamura, and N. Kishi, “Time-resolved chirp properties of soas measured with an optical bandpass filter,” IEEE Photon. Technol. Lett.20, 2001–2003 (2008).
[CrossRef]

Other

M. Presi, A. Chiuchiarelli, R. Corsini, P. Choudhury, and E. Ciaramella, “Enhanced 10-gb/s operation of bandwidth-limited r-soas without electronic equalization,” in “European Conference and Exhibition on Optical Communication,” (Optical Society of America, 2012).

S. Jung, Y. Takushima, and Y. Chung, “Generation of 5-gbps qpsk signal using directly modulated rsoa for 100-km coherent wdm pon,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011).

Q. Guo, A. Tran, and C. Chae, “20 Gb/s WDM-PON system with 1 GHz RSOA using partial response equalization and optical filter detuning,” in “National Fiber Optic Engineers Conference,” (Optical Society of America, 2011).

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” in “Optical Communication, 2008. ECOC 2008. 34th European Conference on,” (IEEE, 2008), pp. 1–2.
[CrossRef]

M. Omella, V. Polo, J. Lazaro, B. Schrenk, and J. Prat, “10 Gb/s RSOA transmission by direct duobinary modulation,” in “Optical Communication, 2008. ECOC 2008. 34th European Conference on,” (IEEE, 2008), pp. 1–2.
[CrossRef]

A. Agata and Y. Horiuchi, “RSOA-Based 10Gb/s WDM PON using FEC and MLSE equalizers,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2010).

Supplementary Material (1)

» Media 1: JPG (6 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

WDM-PON architecture. A single Arrayed Waveguide Grating (AWG-2) operates simultaneously as off-set filter and WDM demultiplexer. AWG-2 has a 12 GHz bandwidth in order to relax constraints due to the chirp and the wavelength drift. Inset shows the relative position of on-grid AWG1 and AWG3, offset AWG-2 and optical signal

Fig. 2
Fig. 2

a): Experimental setup. R-SOA: Reflective SOA; OC: Optical Circulator; TL: Tunable Laser; SMF: Single Mode Fiber; POF: Programmable Optical Filter; APD: Avalanche Photo Diode. b): Comparison of AWG-2 and ideal Gaussian filter obtained by the programmable optical filter.

Fig. 3
Fig. 3

Frequency response measured as a function of the detuning at the transmitter output (a) and after 20 km propagation (b).

Fig. 4
Fig. 4

a Q-factor improvement as a function of the AWG detuning. For selected detuning, corresponding eye-diagrams are reported in the insets. On the left, the first eye diagram was recorded without offset between the AWG and the signal. Insertion losses for the various detuning are reported on top x-axis. b Q-factor improvement obtained with Gaussian filters of different bandwidths. All measurements are performed in back-to-back and eye-diagrams have been recorded over 1 minute time persistence. Time scale is 20 ps/div.

Fig. 5
Fig. 5

BER measurements as function of the received optical power. a) Transmitter Output (Back-to-Back). b) After 20 km propagation

Fig. 6
Fig. 6

Sensitivity of selected channels across the C-band. These measurements were performed by using the receiver of an OC-192 XFP transceiver. Light-gray point indicates the channel used for the extended characterization.

Metrics