Abstract

In this paper, we experimentally realized a gigabit-class indoor visible light communication system using commercially available RGB White LED and exploiting an optimized DMT modulation. We achieved data rate of 1.5 Gbit/s with single channel and 3.4 Gbit/s by implementing WDM transmission at standard illumination levels. In both experiments, the resulting bit error ratios were below the FEC limit. To the best of our knowledge, these values are the highest ever achieved in VLC systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Kumar and N. R. Lourenco, “Led-based visible light communication system: a brief survey and investigation,” J. Eng. Appl. Sci.5, 297–307 (2010).
  2. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J.4(5), 1465–1473 (2012).
    [CrossRef]
  3. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “2.1 Gbit/s visible optical wireless transmission,” Proceedings of ECOC 2012, P4.16(73), Amsterdam, Netherlands, 16–20 Sept. 2012.
  4. D. C. O'Brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: challenges and possibilities,” PIMRC, 1–5, (2008).
  5. Y. Zheng and M. Zhang, “Visible light communications – recent progresses and future outlooks,” SOPO, 1–6 (2010).
  6. C. Kottke, J. Hilt, K. Habel, J. Vučić, and K. D. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” Proceedings of ECOC 2012, We.3.B.4(66), Amsterdam, Netherlands, 16–20 Sept. 2012.
  7. European standard EN 12464–1: Lighting of indoor work places, (2003).
  8. R. A. Shafik, S. Rahman, and R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” ICECE, 408–411 (2006).
  9. D. Hughes-Hartogs, “Ensemble modem structure for imperfect transmission media,” U.S. Patent No. 4,833,796, (May 1989).
  10. ITU-T Recommendation, G.709/Y.1331.

2012

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J.4(5), 1465–1473 (2012).
[CrossRef]

2010

N. Kumar and N. R. Lourenco, “Led-based visible light communication system: a brief survey and investigation,” J. Eng. Appl. Sci.5, 297–307 (2010).

Choudhury, P.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J.4(5), 1465–1473 (2012).
[CrossRef]

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J.4(5), 1465–1473 (2012).
[CrossRef]

Corsini, R.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J.4(5), 1465–1473 (2012).
[CrossRef]

Cossu, G.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J.4(5), 1465–1473 (2012).
[CrossRef]

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J.4(5), 1465–1473 (2012).
[CrossRef]

Kumar, N.

N. Kumar and N. R. Lourenco, “Led-based visible light communication system: a brief survey and investigation,” J. Eng. Appl. Sci.5, 297–307 (2010).

Lourenco, N. R.

N. Kumar and N. R. Lourenco, “Led-based visible light communication system: a brief survey and investigation,” J. Eng. Appl. Sci.5, 297–307 (2010).

IEEE Photon. J.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J.4(5), 1465–1473 (2012).
[CrossRef]

J. Eng. Appl. Sci.

N. Kumar and N. R. Lourenco, “Led-based visible light communication system: a brief survey and investigation,” J. Eng. Appl. Sci.5, 297–307 (2010).

Other

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “2.1 Gbit/s visible optical wireless transmission,” Proceedings of ECOC 2012, P4.16(73), Amsterdam, Netherlands, 16–20 Sept. 2012.

D. C. O'Brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: challenges and possibilities,” PIMRC, 1–5, (2008).

Y. Zheng and M. Zhang, “Visible light communications – recent progresses and future outlooks,” SOPO, 1–6 (2010).

C. Kottke, J. Hilt, K. Habel, J. Vučić, and K. D. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” Proceedings of ECOC 2012, We.3.B.4(66), Amsterdam, Netherlands, 16–20 Sept. 2012.

European standard EN 12464–1: Lighting of indoor work places, (2003).

R. A. Shafik, S. Rahman, and R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” ICECE, 408–411 (2006).

D. Hughes-Hartogs, “Ensemble modem structure for imperfect transmission media,” U.S. Patent No. 4,833,796, (May 1989).

ITU-T Recommendation, G.709/Y.1331.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for single channel (a) and WDM (b) transmission. AWG: Arbitrary Waveform Generator; APD: Avalanche PhotoDiode

Fig. 2
Fig. 2

Experimental results for single channel transmission. (a) Total capacity vs. illuminance at the receiver. b) SNR vs. frequency at 410 lx. (c) Optimal bit loading distribution at 410 lx. (d) Optimal power loading distribution at 410 lx.

Fig. 3
Fig. 3

Experimental results for WDM system. (a) Total aggregate capacity (∇) and single WDM channel capacity (ο, *, □ for red, green and blue channels respectively) vs. illuminance at the receiver. (b) Single WDM channel SNR vs. frequency at 410 lx.

Fig. 4
Fig. 4

Received constellation diagrams for the single channel experiment, for 16th subcarrier (left) and for the 512th subcarrier (right).

Fig. 5
Fig. 5

Experimental capacity for the frequency dependent VLC link for different number of subcarrier.

Metrics