Abstract

We demonstrate a compact 16-channel 200GHz polarization diversity wavelength de-multiplexer circuit using two silicon AWGs and 2D grating couplers. Estimated fiber to fiber loss is better than −15.0dB. Insertion loss and crosstalk induced by the AWGs are −2.6dB and 21.5dB, respectively. The maximum polarization dependent wavelength shift is 0.12nm. The polarization dependent loss varies between 0.06dB and 2.32dB over the 16 channels. The total circuit footprint is 1400 × 850μm2.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron.2(2), 236–250 (1996).
    [CrossRef]
  2. W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Selected Topics in Quantum Electron.16(1), 33–44 (2010).
    [CrossRef]
  3. A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Selected Topics in Quantum Electron.4(6), 913–924 (1998).
    [CrossRef]
  4. M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett.33, 1786–1787 (1997).
    [CrossRef]
  5. Q. Fang, T.Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D.L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express18(5), 5106–5113 (2010).
    [CrossRef] [PubMed]
  6. S. K. Selvaraja, W. Bogaerts, and D. Van Thourhout, “Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement,” Opt. Commun.284(8), 2141–2144 (2011).
    [CrossRef]
  7. C. Doerr, M. Zirngibl, C. Joyner, L. Stulz, and H. Presby, “Polarization diversity waveguide grating receiver with integrated optical preamplifiers,” IEEE Photon. Tech. Lett.9(1), 85–87 (1997).
    [CrossRef]
  8. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith,“Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
    [CrossRef]
  9. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007).
    [CrossRef] [PubMed]
  10. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Phys.45(8A), 6071–6077 (2006).
    [CrossRef]
  11. M. Pu, L. Liu, H. Ou, K. Yvind, and J. r. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun.283(19), 3678–3682 (2010).
    [CrossRef]
  12. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
    [CrossRef]
  13. D. Taillaert, H. Chong, and P. Borel, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett.15(9), 1249–1251 (2003).
    [CrossRef]
  14. F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Tech.27(5), 612–618 (2009).
    [CrossRef]
  15. T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed waveguide grating demultiplexer using Si photonic wire waveguides,” Japanese J. Appl. Phys.43(5B), L673–L675 (2004).
    [CrossRef]
  16. S. Pathak, E. Lambert, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based AWG with flattened spectral response using a MMI,” in IEEE International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, London, 2011), pp. 45–47.
    [CrossRef]
  17. R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photon. Tech. Lett.22(6), 389–391 (2010).
    [CrossRef]
  18. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-Based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” in European Conference and Exhibition on Optical Communication (Optical Society of America, Netherlands, 2012).

2011

S. K. Selvaraja, W. Bogaerts, and D. Van Thourhout, “Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement,” Opt. Commun.284(8), 2141–2144 (2011).
[CrossRef]

2010

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Selected Topics in Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

M. Pu, L. Liu, H. Ou, K. Yvind, and J. r. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun.283(19), 3678–3682 (2010).
[CrossRef]

R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photon. Tech. Lett.22(6), 389–391 (2010).
[CrossRef]

Q. Fang, T.Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D.L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express18(5), 5106–5113 (2010).
[CrossRef] [PubMed]

2009

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Tech.27(5), 612–618 (2009).
[CrossRef]

2007

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007).
[CrossRef] [PubMed]

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith,“Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

2006

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

2004

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed waveguide grating demultiplexer using Si photonic wire waveguides,” Japanese J. Appl. Phys.43(5B), L673–L675 (2004).
[CrossRef]

2003

D. Taillaert, H. Chong, and P. Borel, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett.15(9), 1249–1251 (2003).
[CrossRef]

1998

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Selected Topics in Quantum Electron.4(6), 913–924 (1998).
[CrossRef]

1997

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett.33, 1786–1787 (1997).
[CrossRef]

C. Doerr, M. Zirngibl, C. Joyner, L. Stulz, and H. Presby, “Polarization diversity waveguide grating receiver with integrated optical preamplifiers,” IEEE Photon. Tech. Lett.9(1), 85–87 (1997).
[CrossRef]

1996

M. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron.2(2), 236–250 (1996).
[CrossRef]

Ang, K. W.

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

Baba, T.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed waveguide grating demultiplexer using Si photonic wire waveguides,” Japanese J. Appl. Phys.43(5B), L673–L675 (2004).
[CrossRef]

Baets, R.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Selected Topics in Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Tech.27(5), 612–618 (2009).
[CrossRef]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007).
[CrossRef] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

Baets, R. G.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith,“Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Beckx, S.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

Bogaerts, W.

S. K. Selvaraja, W. Bogaerts, and D. Van Thourhout, “Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement,” Opt. Commun.284(8), 2141–2144 (2011).
[CrossRef]

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Selected Topics in Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Tech.27(5), 612–618 (2009).
[CrossRef]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007).
[CrossRef] [PubMed]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

S. Pathak, E. Lambert, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based AWG with flattened spectral response using a MMI,” in IEEE International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, London, 2011), pp. 45–47.
[CrossRef]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-Based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” in European Conference and Exhibition on Optical Communication (Optical Society of America, Netherlands, 2012).

Borel, P.

D. Taillaert, H. Chong, and P. Borel, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett.15(9), 1249–1251 (2003).
[CrossRef]

Brouckaert, J.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Selected Topics in Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Chong, H.

D. Taillaert, H. Chong, and P. Borel, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett.15(9), 1249–1251 (2003).
[CrossRef]

De Vos, K.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Selected Topics in Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Doerr, C.

C. Doerr, M. Zirngibl, C. Joyner, L. Stulz, and H. Presby, “Polarization diversity waveguide grating receiver with integrated optical preamplifiers,” IEEE Photon. Tech. Lett.9(1), 85–87 (1997).
[CrossRef]

Dumon, P.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Selected Topics in Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Tech.27(5), 612–618 (2009).
[CrossRef]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007).
[CrossRef] [PubMed]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

S. Pathak, E. Lambert, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based AWG with flattened spectral response using a MMI,” in IEEE International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, London, 2011), pp. 45–47.
[CrossRef]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-Based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” in European Conference and Exhibition on Optical Communication (Optical Society of America, Netherlands, 2012).

Fang, Q.

Fukazawa, T.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed waveguide grating demultiplexer using Si photonic wire waveguides,” Japanese J. Appl. Phys.43(5B), L673–L675 (2004).
[CrossRef]

Halir, R.

R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photon. Tech. Lett.22(6), 389–391 (2010).
[CrossRef]

Himeno, A.

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Selected Topics in Quantum Electron.4(6), 913–924 (1998).
[CrossRef]

Hvam, J. r. M.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. r. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun.283(19), 3678–3682 (2010).
[CrossRef]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith,“Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Jaenen, P.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

Joyner, C.

C. Doerr, M. Zirngibl, C. Joyner, L. Stulz, and H. Presby, “Polarization diversity waveguide grating receiver with integrated optical preamplifiers,” IEEE Photon. Tech. Lett.9(1), 85–87 (1997).
[CrossRef]

Kadota, Y.

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett.33, 1786–1787 (1997).
[CrossRef]

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith,“Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Kato, K.

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Selected Topics in Quantum Electron.4(6), 913–924 (1998).
[CrossRef]

Kohtoku, M.

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett.33, 1786–1787 (1997).
[CrossRef]

Kwong, D.L.

Lambert, E.

S. Pathak, E. Lambert, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based AWG with flattened spectral response using a MMI,” in IEEE International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, London, 2011), pp. 45–47.
[CrossRef]

Liow, T.Y.

Liu, L.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. r. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun.283(19), 3678–3682 (2010).
[CrossRef]

Lo, G. Q.

Miya, T.

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Selected Topics in Quantum Electron.4(6), 913–924 (1998).
[CrossRef]

Ohno, F.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed waveguide grating demultiplexer using Si photonic wire waveguides,” Japanese J. Appl. Phys.43(5B), L673–L675 (2004).
[CrossRef]

Oku, S.

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett.33, 1786–1787 (1997).
[CrossRef]

Ou, H.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. r. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun.283(19), 3678–3682 (2010).
[CrossRef]

Pathak, S.

S. Pathak, E. Lambert, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based AWG with flattened spectral response using a MMI,” in IEEE International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, London, 2011), pp. 45–47.
[CrossRef]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-Based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” in European Conference and Exhibition on Optical Communication (Optical Society of America, Netherlands, 2012).

Pluk, E.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith,“Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Presby, H.

C. Doerr, M. Zirngibl, C. Joyner, L. Stulz, and H. Presby, “Polarization diversity waveguide grating receiver with integrated optical preamplifiers,” IEEE Photon. Tech. Lett.9(1), 85–87 (1997).
[CrossRef]

Pu, M.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. r. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun.283(19), 3678–3682 (2010).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith,“Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Roelkens, G.

R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photon. Tech. Lett.22(6), 389–391 (2010).
[CrossRef]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Tech.27(5), 612–618 (2009).
[CrossRef]

Sanjoh, H.

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett.33, 1786–1787 (1997).
[CrossRef]

Selvaraja, S.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Selected Topics in Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Selvaraja, S. K.

S. K. Selvaraja, W. Bogaerts, and D. Van Thourhout, “Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement,” Opt. Commun.284(8), 2141–2144 (2011).
[CrossRef]

Shibata, Y.

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett.33, 1786–1787 (1997).
[CrossRef]

Smit, M.

M. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron.2(2), 236–250 (1996).
[CrossRef]

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith,“Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith,“Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Song, J. F.

Stulz, L.

C. Doerr, M. Zirngibl, C. Joyner, L. Stulz, and H. Presby, “Polarization diversity waveguide grating receiver with integrated optical preamplifiers,” IEEE Photon. Tech. Lett.9(1), 85–87 (1997).
[CrossRef]

Taillaert, D.

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007).
[CrossRef] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

D. Taillaert, H. Chong, and P. Borel, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett.15(9), 1249–1251 (2003).
[CrossRef]

Thourhout, D. V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

Van Dam, C.

M. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron.2(2), 236–250 (1996).
[CrossRef]

Van Laere, F.

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Tech.27(5), 612–618 (2009).
[CrossRef]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

Van Thourhout, D.

S. K. Selvaraja, W. Bogaerts, and D. Van Thourhout, “Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement,” Opt. Commun.284(8), 2141–2144 (2011).
[CrossRef]

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Selected Topics in Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Tech.27(5), 612–618 (2009).
[CrossRef]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007).
[CrossRef] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

S. Pathak, E. Lambert, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based AWG with flattened spectral response using a MMI,” in IEEE International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, London, 2011), pp. 45–47.
[CrossRef]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-Based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” in European Conference and Exhibition on Optical Communication (Optical Society of America, Netherlands, 2012).

Vanslembrouck, M.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-Based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” in European Conference and Exhibition on Optical Communication (Optical Society of America, Netherlands, 2012).

Vermeulen, D.

R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photon. Tech. Lett.22(6), 389–391 (2010).
[CrossRef]

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith,“Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Wiaux, V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

Wouters, J.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

Yoshikuni, Y.

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett.33, 1786–1787 (1997).
[CrossRef]

Yu, M. B.

Yvind, K.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. r. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun.283(19), 3678–3682 (2010).
[CrossRef]

Zirngibl, M.

C. Doerr, M. Zirngibl, C. Joyner, L. Stulz, and H. Presby, “Polarization diversity waveguide grating receiver with integrated optical preamplifiers,” IEEE Photon. Tech. Lett.9(1), 85–87 (1997).
[CrossRef]

J. Lightwave Tech.

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Tech.27(5), 612–618 (2009).
[CrossRef]

Electron. Lett.

M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett.33, 1786–1787 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron.2(2), 236–250 (1996).
[CrossRef]

IEEE J. Selected Topics in Quantum Electron.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Selected Topics in Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Selected Topics in Quantum Electron.4(6), 913–924 (1998).
[CrossRef]

IEEE Photon. Tech. Lett.

C. Doerr, M. Zirngibl, C. Joyner, L. Stulz, and H. Presby, “Polarization diversity waveguide grating receiver with integrated optical preamplifiers,” IEEE Photon. Tech. Lett.9(1), 85–87 (1997).
[CrossRef]

D. Taillaert, H. Chong, and P. Borel, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett.15(9), 1249–1251 (2003).
[CrossRef]

R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photon. Tech. Lett.22(6), 389–391 (2010).
[CrossRef]

Japanese J. Appl. Phys.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed waveguide grating demultiplexer using Si photonic wire waveguides,” Japanese J. Appl. Phys.43(5B), L673–L675 (2004).
[CrossRef]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

Nat. Photonics

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith,“Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Opt. Commun.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. r. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun.283(19), 3678–3682 (2010).
[CrossRef]

S. K. Selvaraja, W. Bogaerts, and D. Van Thourhout, “Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement,” Opt. Commun.284(8), 2141–2144 (2011).
[CrossRef]

Opt. Express

Other

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-Based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” in European Conference and Exhibition on Optical Communication (Optical Society of America, Netherlands, 2012).

S. Pathak, E. Lambert, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based AWG with flattened spectral response using a MMI,” in IEEE International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, London, 2011), pp. 45–47.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of 16 × 400GHz Polarization diversity circuit.

Fig. 2
Fig. 2

(a) Fabricated 2D grating coupler. (b) Schematic diagram of a 2D grating coupler with fiber align.

Fig. 3
Fig. 3

(a) Mask layout of silicon AWG. (b) Zoom into waveguide array region, showing combination of 450nm and 800nm wide waveguides to minimize phase errors. (c) A 2μm wide shallow etched aperture.

Fig. 4
Fig. 4

Spectral response of a 2D grating coupler connected to two 1D grating couplers for differently oriented input polarizations ((a) Pol-1: 90 degree, (b) Pol-2: −45 degree, c) Pol-3: 0 degree, (d) Pol-4: 45 degree oriented fiber polarizations with respect to the axis of the 2D grating).

Fig. 5
Fig. 5

Mapping of alignment tolerance for different oriented fiber polarizations ((a) Pol-1: 90 degree, (b) Pol-2: −45 degree, c) Pol-3: 0 degree, (d) Pol-4: 45 degree oriented fiber polarizations with respect to the axis of the 2D grating). (a) and (c) The solid line represents the transmission through waveguide WG − 1. The dashed line represent the transmission through waveguide WG − 2.

Fig. 6
Fig. 6

Transmission of two 2-D grating couplers connected through waveguides. (a) Spectral response of the 2D grating for wavelength rage of 1.48μm to 1.56μm. (b) Flat passband spectral response of the 2D grating.

Fig. 7
Fig. 7

Spectral response of a 16 channels 200GHz polarization diversity wavelength demultiplexer circuit for Pol − 1 and Pol − 3 polarizations.

Fig. 8
Fig. 8

(a) The output wavelength channel positions of the polarization diversity circuit for Pol − 1, Pol − 2, Pol − 3, and Pol − 4 polarizations. (b) Maximum shifted output channel. (c) Minimum shifted output channel.

Metrics