Abstract

Experiments and numerical simulation demonstrate the validity of wavelength-interleaving (WI) transmission for reducing the penalty induced by polarization dependent loss (PDL) through the method of extreme value statistics. It is confirmed that applying the WI technique across n (n>1) channels can effectively reduce PDL-induced Q-penalty or outage probability.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Shtaif, “Performance degradation in coherent polarization multiplexed systems as a result of polarization dependent loss,” Opt. Express 16(18), 13918–13932 (2008).
    [CrossRef] [PubMed]
  2. S. Yamamoto, T. Inui, H. Kawakami, S. Yamanaka, T. Kawai, T. Ono, K. Mori, M. Suzuki, A. Iwaki, T. Kataoka, M. Fukutoku, T. Nakagawa, T. Sakano, M. Tomizawa, Y. Miyamoto, S. Suzuki, K. Murata, T. Kotanigawa, and A. Maeda, “Hybrid 40-Gb/s and 100-Gb/s PDM-QPSK DWDM transmission using real-time DSP in field testbed,” Proc. OFC’12, JW2A.4 (2012).
  3. O. Vassilieva, Inwoong Kim, and Takao Naito, “Systematic investigation of interplay between nonlinear and polarization dependent loss effects in coherent polarization multiplexed systems,” Proc. OFC’08, OThU6 (2008).
  4. B. Xie, Y. Guan, Z. Li, and C. Lu, “FEC performance of optical communication systems with PMD and wavelength interleaving,” IEEE Photon. Technol. Lett. 16, 936–938 (2004).
    [CrossRef]
  5. S. Hadjifaradji, S. Yang, L. Chen, and X. Bao, “PMD-PDL emulator designs for low interchannel correlation,” IEEE Photon. Technol. Lett. 18(22), 2362–2364 (2006).
    [CrossRef]
  6. S. Savory, F. Payne, and A. Hadjifotiou, “Estimating outages due to polarization mode dispersion using extreme value statistics,” J. Lightwave Technol. 24(11), 3907–3913 (2006).
    [CrossRef]
  7. R. D. Reiss and M. Thomas, Statistical analysis of extreme values (Cambridge, 1997.)

2008 (1)

2006 (2)

S. Hadjifaradji, S. Yang, L. Chen, and X. Bao, “PMD-PDL emulator designs for low interchannel correlation,” IEEE Photon. Technol. Lett. 18(22), 2362–2364 (2006).
[CrossRef]

S. Savory, F. Payne, and A. Hadjifotiou, “Estimating outages due to polarization mode dispersion using extreme value statistics,” J. Lightwave Technol. 24(11), 3907–3913 (2006).
[CrossRef]

2004 (1)

B. Xie, Y. Guan, Z. Li, and C. Lu, “FEC performance of optical communication systems with PMD and wavelength interleaving,” IEEE Photon. Technol. Lett. 16, 936–938 (2004).
[CrossRef]

Bao, X.

S. Hadjifaradji, S. Yang, L. Chen, and X. Bao, “PMD-PDL emulator designs for low interchannel correlation,” IEEE Photon. Technol. Lett. 18(22), 2362–2364 (2006).
[CrossRef]

Chen, L.

S. Hadjifaradji, S. Yang, L. Chen, and X. Bao, “PMD-PDL emulator designs for low interchannel correlation,” IEEE Photon. Technol. Lett. 18(22), 2362–2364 (2006).
[CrossRef]

Guan, Y.

B. Xie, Y. Guan, Z. Li, and C. Lu, “FEC performance of optical communication systems with PMD and wavelength interleaving,” IEEE Photon. Technol. Lett. 16, 936–938 (2004).
[CrossRef]

Hadjifaradji, S.

S. Hadjifaradji, S. Yang, L. Chen, and X. Bao, “PMD-PDL emulator designs for low interchannel correlation,” IEEE Photon. Technol. Lett. 18(22), 2362–2364 (2006).
[CrossRef]

Hadjifotiou, A.

Li, Z.

B. Xie, Y. Guan, Z. Li, and C. Lu, “FEC performance of optical communication systems with PMD and wavelength interleaving,” IEEE Photon. Technol. Lett. 16, 936–938 (2004).
[CrossRef]

Lu, C.

B. Xie, Y. Guan, Z. Li, and C. Lu, “FEC performance of optical communication systems with PMD and wavelength interleaving,” IEEE Photon. Technol. Lett. 16, 936–938 (2004).
[CrossRef]

Payne, F.

Savory, S.

Shtaif, M.

Xie, B.

B. Xie, Y. Guan, Z. Li, and C. Lu, “FEC performance of optical communication systems with PMD and wavelength interleaving,” IEEE Photon. Technol. Lett. 16, 936–938 (2004).
[CrossRef]

Yang, S.

S. Hadjifaradji, S. Yang, L. Chen, and X. Bao, “PMD-PDL emulator designs for low interchannel correlation,” IEEE Photon. Technol. Lett. 18(22), 2362–2364 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. Xie, Y. Guan, Z. Li, and C. Lu, “FEC performance of optical communication systems with PMD and wavelength interleaving,” IEEE Photon. Technol. Lett. 16, 936–938 (2004).
[CrossRef]

S. Hadjifaradji, S. Yang, L. Chen, and X. Bao, “PMD-PDL emulator designs for low interchannel correlation,” IEEE Photon. Technol. Lett. 18(22), 2362–2364 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Other (3)

S. Yamamoto, T. Inui, H. Kawakami, S. Yamanaka, T. Kawai, T. Ono, K. Mori, M. Suzuki, A. Iwaki, T. Kataoka, M. Fukutoku, T. Nakagawa, T. Sakano, M. Tomizawa, Y. Miyamoto, S. Suzuki, K. Murata, T. Kotanigawa, and A. Maeda, “Hybrid 40-Gb/s and 100-Gb/s PDM-QPSK DWDM transmission using real-time DSP in field testbed,” Proc. OFC’12, JW2A.4 (2012).

O. Vassilieva, Inwoong Kim, and Takao Naito, “Systematic investigation of interplay between nonlinear and polarization dependent loss effects in coherent polarization multiplexed systems,” Proc. OFC’08, OThU6 (2008).

R. D. Reiss and M. Thomas, Statistical analysis of extreme values (Cambridge, 1997.)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of 2-WI transmission system. The numbers in blocks indicate the channel number and shadings mean the degradation difference of optical signals between 2 channels.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

(a) Temporal change in observed Q-factor of ch1 and ch2. (b) Scatter plots of Q-factors for the two channels. (c) Probability density of ch1, ch2, and interleaved channel as a function of Q-factor.

Fig. 4
Fig. 4

Cumulative probabilities from experimental data (symbols) and fitted H(x) obtained from Eq. (1) with estimated parameters (solid curves) for ch1 (a), ch2 (b), and interleaved channel (c).

Fig. 5
Fig. 5

Estimated Q-limit from Eq. (2) as a function of outage probability for ch1, ch2 and interleaved channel. Note that error bars at outage probability of 10−2, 10−4, and 10−6 are estimated based on the 90% confidence intervals of σ and ξ.

Fig. 6
Fig. 6

(a) Simulated probability densities of Q-factors for the channels without WI transmission (blue), with 4-WI transmission (magenta), and with 8-WI transmission (yellow). (b) The Q-penalty improvement in dB as a function of the number of interleaving wavelengths n for a fixed outage probability of 10−6.

Tables (1)

Tables Icon

Table 1 Estimated parameters for ch1, ch2, and interleaved channel.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H(x)=1 ( 1+ ξx σ ) 1/ξ ,
Q m =u σ ξ [ ( m k N ) ξ 1 ],

Metrics