Abstract

This paper presents a novel technique capable of Rayleigh backscattering (RB) mitigation and chromatic dispersion (CD) compensation for wavelength-division-multiplexed passive optical network (WDM-PON). The reduction of the interference caused by RB and CD in the uplink based on reflective electro-absorption modulator (REAM) is realized by the proposed correlative level (CL) coding. We investigate the RB-induced interferometric crosstalk for different fiber lengths. 10 Gb/s and 20 Gb/s transmissions over 70 km and 35 km fiber are demonstrated using the CL codes of dicode and modified duobinary (MD), respectively. Significant improvement in system resilience to backscattered seed light is verified for both dicode and MD coding. MD-coded signal also exhibits considerable robustness against the effects of CD.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
    [CrossRef]
  2. K. M. Choi, J. S. Baik, and C. H. Lee, “Broad-band light source using mutually injected Fabry-Perot laser diodes for WDM-PON,” IEEE Photon. Technol. Lett.17(12), 2529–2531 (2005).
    [CrossRef]
  3. E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, “Extended-reach PON employing 10Gbits/s integrated reflective EAM-SOA,” Proc. European Conference on Optical Communication (ECOC), paper Th.2.F.1 (2008).
  4. S. J. Park, G. Y. Kim, T. Park, E. H. Choi, S. H. Oh, Y. S. Baek, K. R. Oh, Y. J. Park, J. U. Shin, and H. K. Sung, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Proc. European Conference on Optical Communication (ECOC), paper We3.3.6 (2005).
  5. C. Arellano, C. Bock, J. Prat, and K. D. Langer, “RSOA-based Optical Network Units for WDM-PON,” Proc. Optical Fiber Communication (OFC) Conference, paper OTuC1 (2006).
  6. W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
    [CrossRef]
  7. Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett.24(11), 951–953 (2012).
    [CrossRef]
  8. H. S. Kim, D. C. Kim, K. S. Kim, B. S. Choi, and O. K. Kwon, “10.7 Gb/s reflective electroabsorption modulator monolithically integrated with semiconductor optical amplifier for colorless WDM-PON,” Opt. Express18(22), 23324–23330 (2010).
    [CrossRef] [PubMed]
  9. G. Girault, L. Bramerie, O. Vaudel, S. Lobo, P. Besnard, M. Joindot, J.-C. Simon, C. Kazmierski, N. Dupuis, A. Garreau, Z. Belfqih, and P. Chanclou, “10 Gbit/s PON demonstration using a REAM-SOA in a bidirectional fiber configuration up to 25 km SMF,” Proc. European Conference on Optical Communication (ECOC), paper P.6.08 (2008).
  10. S. Y. Kim, S. B. Jun, Y. Takushima, E. S. Son, and Y. C. Chung, “Enhanced performance of RSOA-based. WDMPON by using Manchester coding,” J. Opt. Netw.6(6), 624–630 (2007).
    [CrossRef]
  11. M. Presi, A. Chiuchiarelli, R. Proietti, P. Choudhury, G. Contestabile, and E. Ciaramella, “Single Feeder Bidirectional WDM-PON with Enhanced Resilience to Rayleigh-Backscattering,” Proc. Optical Fiber Communication (OFC) Conference, paper OThG2 (2010).
  12. K. Y. Cho, A. Murakami, Y. J. Lee, A. Agata, Y. Takushima, and Y. C. Chung, “Demonstration of RSOA-based WDM PON operating at symmetric rate of 1.25 Gb/s with high reflection tolerance,” Proc. Optical Fiber Communication (OFC) Conference, paper OTuH4 (2008).
  13. M. Omella, V. Polo, J. Lazaro, B. Schrenk, and J. Prat, “10 Gb/s RSOA transmission by direct duobinary modulation,” Proc. European Conference on Optical Communication (ECOC), paper Tu.3.E.4 (2008).
  14. K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced chromatic dispersion tolerance of 11 Gbit/s RSOA-based WDM PON using 4-ary PAM signal,” Electron. Lett.46(22), 1510–1511 (2010).
    [CrossRef]
  15. Q. Guo and A. V. Tran, “Mitigation of Rayleigh Noise and Dispersion in REAM-based WDM-PON using Partial-Response Signaling” Proc. European Conference on Optical Communication (ECOC), paper We.2.B.4 (2012).
  16. Q. Guo and A. V. Tran, “Level coding technique for a wavelength-division-multiplexed optical access system using a remodulation scheme,” Opt. Lett.37(19), 4137–4139 (2012).
    [CrossRef] [PubMed]
  17. Q. Guo and A. Tran, “40 Gb/s Operation of SOA-REAM in Single-Feeder WDM-PON [Invited],” J. Opt. Commun. Netw.4(11), B77–B84 (2012).
    [CrossRef]
  18. J. Xu, M. Li, and L. K. Chen, “Rayleigh Noise Reduction in 10-Gb/s Carrier-Distributed WDM-PONs Using In-Band Optical Filtering,” J. Lightwave Technol.29(24), 3632–3639 (2011).
    [CrossRef]
  19. C. Arellano, K. Langer, and J. Prat, “Reflections and multiple Rayleigh backscattering in WDM single-fiber loopback access networks,” J. Lightwave Technol.27(1), 12–18 (2009).
    [CrossRef]
  20. F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol.11(12), 1937–1940 (1993).
    [CrossRef]
  21. R. K. Staubli and P. Gysel, “Statistical Properties of Single-Mode Fiber Rayleigh Backscattered Intensity and Resulting Detector Current,” IEEE Trans. Commun.40(6), 1091–1097 (1992).
    [CrossRef]
  22. P. Kabal and S. Pasupathy, “Partial response signaling,” IEEE. Trans. Commun. COM23(9), 921–934 (1975).
    [CrossRef]
  23. A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol. COM12(4), 128–135 (1964).
    [CrossRef]
  24. X. Gu and L. C. Blank, “10 Gb/s unrepeatered three-level optical transmission over 100 km of standard fiber,” Electron. Lett.29(25), 2209–2211 (1993).
    [CrossRef]
  25. K. Yonenaga and S. Kuwano, “Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver,” J. Lightwave Technol.15(8), 1530–1537 (1997).
    [CrossRef]

2012

2011

2010

H. S. Kim, D. C. Kim, K. S. Kim, B. S. Choi, and O. K. Kwon, “10.7 Gb/s reflective electroabsorption modulator monolithically integrated with semiconductor optical amplifier for colorless WDM-PON,” Opt. Express18(22), 23324–23330 (2010).
[CrossRef] [PubMed]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced chromatic dispersion tolerance of 11 Gbit/s RSOA-based WDM PON using 4-ary PAM signal,” Electron. Lett.46(22), 1510–1511 (2010).
[CrossRef]

2009

2007

2005

K. M. Choi, J. S. Baik, and C. H. Lee, “Broad-band light source using mutually injected Fabry-Perot laser diodes for WDM-PON,” IEEE Photon. Technol. Lett.17(12), 2529–2531 (2005).
[CrossRef]

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

2001

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

1997

K. Yonenaga and S. Kuwano, “Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver,” J. Lightwave Technol.15(8), 1530–1537 (1997).
[CrossRef]

1993

X. Gu and L. C. Blank, “10 Gb/s unrepeatered three-level optical transmission over 100 km of standard fiber,” Electron. Lett.29(25), 2209–2211 (1993).
[CrossRef]

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol.11(12), 1937–1940 (1993).
[CrossRef]

1992

R. K. Staubli and P. Gysel, “Statistical Properties of Single-Mode Fiber Rayleigh Backscattered Intensity and Resulting Detector Current,” IEEE Trans. Commun.40(6), 1091–1097 (1992).
[CrossRef]

1975

P. Kabal and S. Pasupathy, “Partial response signaling,” IEEE. Trans. Commun. COM23(9), 921–934 (1975).
[CrossRef]

1964

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol. COM12(4), 128–135 (1964).
[CrossRef]

Arellano, C.

Baik, J. S.

K. M. Choi, J. S. Baik, and C. H. Lee, “Broad-band light source using mutually injected Fabry-Perot laser diodes for WDM-PON,” IEEE Photon. Technol. Lett.17(12), 2529–2531 (2005).
[CrossRef]

Blank, L. C.

X. Gu and L. C. Blank, “10 Gb/s unrepeatered three-level optical transmission over 100 km of standard fiber,” Electron. Lett.29(25), 2209–2211 (1993).
[CrossRef]

Chen, L. K.

Cho, K. Y.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced chromatic dispersion tolerance of 11 Gbit/s RSOA-based WDM PON using 4-ary PAM signal,” Electron. Lett.46(22), 1510–1511 (2010).
[CrossRef]

Cho, S. H.

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Choi, B. S.

Choi, K. M.

K. M. Choi, J. S. Baik, and C. H. Lee, “Broad-band light source using mutually injected Fabry-Perot laser diodes for WDM-PON,” IEEE Photon. Technol. Lett.17(12), 2529–2531 (2005).
[CrossRef]

Chung, Y. C.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced chromatic dispersion tolerance of 11 Gbit/s RSOA-based WDM PON using 4-ary PAM signal,” Electron. Lett.46(22), 1510–1511 (2010).
[CrossRef]

S. Y. Kim, S. B. Jun, Y. Takushima, E. S. Son, and Y. C. Chung, “Enhanced performance of RSOA-based. WDMPON by using Manchester coding,” J. Opt. Netw.6(6), 624–630 (2007).
[CrossRef]

Devaux, F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol.11(12), 1937–1940 (1993).
[CrossRef]

Ford, C.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Gu, X.

X. Gu and L. C. Blank, “10 Gb/s unrepeatered three-level optical transmission over 100 km of standard fiber,” Electron. Lett.29(25), 2209–2211 (1993).
[CrossRef]

Guo, Q.

Gysel, P.

R. K. Staubli and P. Gysel, “Statistical Properties of Single-Mode Fiber Rayleigh Backscattered Intensity and Resulting Detector Current,” IEEE Trans. Commun.40(6), 1091–1097 (1992).
[CrossRef]

Healey, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Jeong, G.

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Johnston, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Jun, S. B.

Kabal, P.

P. Kabal and S. Pasupathy, “Partial response signaling,” IEEE. Trans. Commun. COM23(9), 921–934 (1975).
[CrossRef]

Kerdiles, J. F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol.11(12), 1937–1940 (1993).
[CrossRef]

Kim, B. W.

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Kim, C.

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Kim, D. C.

Kim, H. S.

Kim, K. S.

Kim, S. Y.

Kuwano, S.

K. Yonenaga and S. Kuwano, “Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver,” J. Lightwave Technol.15(8), 1530–1537 (1997).
[CrossRef]

Kwon, O. K.

Langer, K.

Lealman, I.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Lee, C. H.

K. M. Choi, J. S. Baik, and C. H. Lee, “Broad-band light source using mutually injected Fabry-Perot laser diodes for WDM-PON,” IEEE Photon. Technol. Lett.17(12), 2529–2531 (2005).
[CrossRef]

Lee, J. H.

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Lee, W.

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Lender, A.

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol. COM12(4), 128–135 (1964).
[CrossRef]

Li, M.

Moore, R.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Park, M. Y.

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Pasupathy, S.

P. Kabal and S. Pasupathy, “Partial response signaling,” IEEE. Trans. Commun. COM23(9), 921–934 (1975).
[CrossRef]

Perrin, S.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Prat, J.

Rivers, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Son, E. S.

Sorel, Y.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol.11(12), 1937–1940 (1993).
[CrossRef]

Staubli, R. K.

R. K. Staubli and P. Gysel, “Statistical Properties of Single-Mode Fiber Rayleigh Backscattered Intensity and Resulting Detector Current,” IEEE Trans. Commun.40(6), 1091–1097 (1992).
[CrossRef]

Takushima, Y.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced chromatic dispersion tolerance of 11 Gbit/s RSOA-based WDM PON using 4-ary PAM signal,” Electron. Lett.46(22), 1510–1511 (2010).
[CrossRef]

S. Y. Kim, S. B. Jun, Y. Takushima, E. S. Son, and Y. C. Chung, “Enhanced performance of RSOA-based. WDMPON by using Manchester coding,” J. Opt. Netw.6(6), 624–630 (2007).
[CrossRef]

Townley, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Townsend, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

Tran, A.

Tran, A. V.

Q. Guo and A. V. Tran, “Level coding technique for a wavelength-division-multiplexed optical access system using a remodulation scheme,” Opt. Lett.37(19), 4137–4139 (2012).
[CrossRef] [PubMed]

Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett.24(11), 951–953 (2012).
[CrossRef]

Xu, J.

Yonenaga, K.

K. Yonenaga and S. Kuwano, “Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver,” J. Lightwave Technol.15(8), 1530–1537 (1997).
[CrossRef]

Electron. Lett.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001).
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “Enhanced chromatic dispersion tolerance of 11 Gbit/s RSOA-based WDM PON using 4-ary PAM signal,” Electron. Lett.46(22), 1510–1511 (2010).
[CrossRef]

X. Gu and L. C. Blank, “10 Gb/s unrepeatered three-level optical transmission over 100 km of standard fiber,” Electron. Lett.29(25), 2209–2211 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

K. M. Choi, J. S. Baik, and C. H. Lee, “Broad-band light source using mutually injected Fabry-Perot laser diodes for WDM-PON,” IEEE Photon. Technol. Lett.17(12), 2529–2531 (2005).
[CrossRef]

W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Q. Guo and A. V. Tran, “Demonstration of 40-Gb/s WDM-PON system using SOA-REAM and equalization,” IEEE Photon. Technol. Lett.24(11), 951–953 (2012).
[CrossRef]

IEEE Trans. Commun.

R. K. Staubli and P. Gysel, “Statistical Properties of Single-Mode Fiber Rayleigh Backscattered Intensity and Resulting Detector Current,” IEEE Trans. Commun.40(6), 1091–1097 (1992).
[CrossRef]

IEEE Trans. Commun. Technol. COM

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol. COM12(4), 128–135 (1964).
[CrossRef]

IEEE. Trans. Commun. COM

P. Kabal and S. Pasupathy, “Partial response signaling,” IEEE. Trans. Commun. COM23(9), 921–934 (1975).
[CrossRef]

J. Lightwave Technol.

J. Xu, M. Li, and L. K. Chen, “Rayleigh Noise Reduction in 10-Gb/s Carrier-Distributed WDM-PONs Using In-Band Optical Filtering,” J. Lightwave Technol.29(24), 3632–3639 (2011).
[CrossRef]

C. Arellano, K. Langer, and J. Prat, “Reflections and multiple Rayleigh backscattering in WDM single-fiber loopback access networks,” J. Lightwave Technol.27(1), 12–18 (2009).
[CrossRef]

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol.11(12), 1937–1940 (1993).
[CrossRef]

K. Yonenaga and S. Kuwano, “Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver,” J. Lightwave Technol.15(8), 1530–1537 (1997).
[CrossRef]

J. Opt. Commun. Netw.

J. Opt. Netw.

Opt. Express

Opt. Lett.

Other

Q. Guo and A. V. Tran, “Mitigation of Rayleigh Noise and Dispersion in REAM-based WDM-PON using Partial-Response Signaling” Proc. European Conference on Optical Communication (ECOC), paper We.2.B.4 (2012).

M. Presi, A. Chiuchiarelli, R. Proietti, P. Choudhury, G. Contestabile, and E. Ciaramella, “Single Feeder Bidirectional WDM-PON with Enhanced Resilience to Rayleigh-Backscattering,” Proc. Optical Fiber Communication (OFC) Conference, paper OThG2 (2010).

K. Y. Cho, A. Murakami, Y. J. Lee, A. Agata, Y. Takushima, and Y. C. Chung, “Demonstration of RSOA-based WDM PON operating at symmetric rate of 1.25 Gb/s with high reflection tolerance,” Proc. Optical Fiber Communication (OFC) Conference, paper OTuH4 (2008).

M. Omella, V. Polo, J. Lazaro, B. Schrenk, and J. Prat, “10 Gb/s RSOA transmission by direct duobinary modulation,” Proc. European Conference on Optical Communication (ECOC), paper Tu.3.E.4 (2008).

G. Girault, L. Bramerie, O. Vaudel, S. Lobo, P. Besnard, M. Joindot, J.-C. Simon, C. Kazmierski, N. Dupuis, A. Garreau, Z. Belfqih, and P. Chanclou, “10 Gbit/s PON demonstration using a REAM-SOA in a bidirectional fiber configuration up to 25 km SMF,” Proc. European Conference on Optical Communication (ECOC), paper P.6.08 (2008).

E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, “Extended-reach PON employing 10Gbits/s integrated reflective EAM-SOA,” Proc. European Conference on Optical Communication (ECOC), paper Th.2.F.1 (2008).

S. J. Park, G. Y. Kim, T. Park, E. H. Choi, S. H. Oh, Y. S. Baek, K. R. Oh, Y. J. Park, J. U. Shin, and H. K. Sung, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Proc. European Conference on Optical Communication (ECOC), paper We3.3.6 (2005).

C. Arellano, C. Bock, J. Prat, and K. D. Langer, “RSOA-based Optical Network Units for WDM-PON,” Proc. Optical Fiber Communication (OFC) Conference, paper OTuC1 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Major types of RB interferers in the upstream transmission of single-feeder WDM-PON.

Fig. 2
Fig. 2

The gain provided by the ONU at different input power.

Fig. 3
Fig. 3

PRBcw / PRBsig for (a) different fiber length L and (b) different launched carrier power PC.

Fig. 4
Fig. 4

Simulated frequency responses of the uplink at various distances.

Fig. 5
Fig. 5

(a) Spectra of 20 Gb/s binary, dicode and MD signals, and diagrams of (b) dicode and (c) MD coding.

Fig. 6
Fig. 6

Experimental setup for transmission studies.

Fig. 7
Fig. 7

Characteristics of SOA-REAM: (a) ASE spectrum and (b) frequency response.

Fig. 8
Fig. 8

(a) BER vs. OSRR and (b) BER vs. Distance for 10 Gb/s uplink.

Fig. 9
Fig. 9

BER vs. transmission distance for 20 Gb/s uplink.

Fig. 10
Fig. 10

Experimental setup for RBcw tolerance studies for 20 Gb/s uplink.

Fig. 11
Fig. 11

BER vs. CSR for 20 Gb/s uplink.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P RBcw = P c S α s (1 e 2αL )/2α
P RBsig = P c S α s (1 e 2αL ) e 2(αL+ α c ) G ONU 2 /2α
P RBsig P RBcw (dB)=2( G ONU (dB) L p (dB) )
G ONU (dB)={ 153.9× 10 4 ( P in (dBm)+32.5) 3 if P in <-5dBm -0.9 P in (dBm)+2.5 if P in -5dBm
P in (dBm)= P c (dBm) L p (dB), L p (dB)=10log( e αL+ α c )
H(f)=cos[ π λ 0 2 D( λ o ) f 2 L c + tan 1 (k) ]
S(ω)= I b 2 ( 2πδ(ω)+ 2Δω Δ ω 2 + ω 2 )
H( D ) = ( 1D ) ( 1+D ) n

Metrics